
Uncovering Urban Mobility and City Dynamics from Large-Scale Taxi

Origin-Destination (O-D) Trips: Case Study in Washington DC Area

Xiao-Feng Xie, Zunjing Jenipher Wang

WIOMAX LLC, PO Box 540, Rockville, MD 20848

Abstract

We perform a systematic analysis on the large-scale taxi trip data to uncover urban mobility and
city dynamics in multimodal urban transportation environments. As a case study, we use the taxi
origin-destination trip data and some additional data sources in Washington DC area. We �rst
study basic characteristics of taxi trips, then focus on �ve important aspects. Three of them con-
cern urban mobility, which are respectively mobility and cost including e�ect of tra�c congestion,
trip safety, and multimodal connectivity; the other two pertain to city dynamics, which are re-
spectively transportation resilience and the relation between trip patterns and land use. For these
aspects, we use appropriate statistical methods and geographic techniques to mine patterns and
characteristics from taxi trip data for better understanding qualitative and quantitative impacts of
the inputs from key stakeholders on available measures of e�ectiveness on urban mobility and city
dynamics, where key stakeholders include road users, system operators, and city. Finally, we briey
summarize our �ndings and discuss some critical roles and implications of the uncovered patterns
and characteristics from the relation between taxi system and key stakeholders. The results can
support road users by providing evidence-based information of trip cost, mobility, safety, multi-
modal connectivity and transportation resilience, can assist taxi drivers and operators to deliver
transportation services in a higher quality of mobility, safety and operational e�ciency, and can
also help city planners and policy makers to transform multimodal transportation and to manage
urban resources in a more e�ective and better way.

Keywords: Urban Mobility, Spatial and Temporal Analysis, Taxi Origin-Destination (O-D)
Trips, Transportation Data Analysis, Multimodal Urban Transportation

1. Introduction

More than half of the world’s population lives in cities now, and estimated 65-70% of the
world’s population will live in cities by 2050 [40]. The swell in urban populations puts signi�cant
pressure on urban transportation systems, and there has been increasing interest in gaining a
better understanding on the urban mobility and city dynamics for achieving sustainable urban
transportation systems [2, 19]. Accompanied by the city development and transformation, the taxi
industry, as one of essential mode in multimodal urban transportation systems, has kept growing
with a fast-paced evolution in many recent years.
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Serving diverse transportation demands from a large number of people and often equipped
with Global Positioning System (GPS) devices, taxi cabs become participatory sensors generating
a huge amount of data with massive spatio-temporal information on human activity and mobility.
Extensive research has been conducted using taxi trip data [5, 9]. Some work focused on under-
standing fundamental human mobility patterns and statistics. [42] studied the common regularity
of intra-city human mobility by taxi through a empirical comparative analysis. Peng et al. [28]
found that people’s travels on workdays using taxi follow a few primary ow patterns. [38] use
observed origin-destination (OD) matrix to model the tra�c distribution patterns.

Other studies drew attentions to urban mobility and city dynamics. On urban mobility, most
research aimed to extract tra�c and transportation dynamics through data analysis of taxi trips, as
according to which bene�cial applications could be found and provided to road users or stakehold-
ers. Geroliminis and Daganzo [12] revealed urban-scale macroscopic fundamental diagrams using
taxi trips. Zhan et al. [56] presented a method to estimate possible linked travel time in urban
road networks using the OD trip data of taxis. Yang et al. [54] proposed a smart driving direction
and route planning system to leverage the experience of taxi drivers on choosing driving directions.
[32] and [59] found that taxi services are well mutual complementary with other transportation
modes such as airport and public transits in multimodal urban tra�c environments. Donovan
and Work [7] proposed quantitative methods measuring the resilience of transportation systems,
by using the deviations of historical distribution in normalized travel time of taxi among various
regions of a city. Regarding tra�c congestion | a signi�cant problem in major cities [33], a few
studies [11, 31, 55] presented pricing schemes to support o�ering taxi drivers extra incentives so
that they would work in congested peak hours. Concerning road safety, Boufous and Williamson
[4] and Wu et al. [44] investigated some safety issues of taxi trips.

On city dynamics, researchers targeted to gain more insights on social dynamics and urban
structures [1, 5]. Ref. [30] revealed that urban forms have signi�cant impact on urban taxi ridership.
Liu et al. [21] interpreted the spatial and temporal patterns observed in intra-urban human mobility
through integrating spatial heterogeneity and distance decay of trips. Shen et al. [34] and Zhang
et al. [58] used taxi data to identify points of interest (POIs) and statistically signi�cant spatial
clusters based on hot spot analysis. Guo et al. [15] detected location characteristics and spatial
structures from spatial and temporal patterns in the taxi trip movements. Liu et al. [22] linked
the temporal variations in taxi pick-ups and drop-o�s with various land use features. Liu et al.
[20] identi�ed sub-regional structures by exploring the inherent connection between travel patterns
and city structure. Zhang et al. [58] revealed intra-urban travel patterns and service ranges by
analyzing taxi trajectories. Zhu et al. [60] clustered street types based on their dynamic functions.

It is important to understand multimodal urban mobility from the viewpoint of taxi services.
The signi�cance is threefold. First, taxicabs are mixed with other motor vehicles in tra�c ows
and face the same tra�c congestion problem on urban road networks. Thus the taxi trip data can
serve as suitable source for measuring the impact of urban congestion on mobility and trip cost.
Notice that the mobility is similar between taxicabs and passenger vehicles as they are mixed in
tra�c, whereas the trip cost of using taxi services is normally higher than that of using public
transit services. Second, taxi services, along with the broader ridesharing services [6], represent a
class of shared-use mobility with the for-hire vehicles serving the travelers who do not own or use
their private vehicles. As tra�c congestion and vehicle emissions are two serious problems for most
major cities nowadays, there is an increasing need to encourage the less use of private vehicles [3, 17]
for reducing the total vehicle miles of travel (VMT) and making urban transportation to be more
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sustainable. Understanding the role of taxi services in multimodal transportation is essential for
fostering the process of mode shift in transportation. For this purpose, we need to measure basic
metrics including mobility, cost and safety of taxi trips and the multimodal connectivity in urban
environments. Third, the taxi mode has high accessibility and exibility, since taxi services are not
constrained to pre-speci�ed origins and destinations in comparison with the users of public transit
services. The broad sampling of OD trips enable us to study the collective behaviors of road
users from their movements in the city, which is very valuable for elevating the comprehension
of urban dynamics on the issues corresponding to system complexity such as the resilience of
transportation systems and the relations between trip patterns and urban structures. In brief,
a complete understanding on urban mobility and city dynamics is crucial for transforming cities
to smart cities delivering e�ective, e�cient, resilient, and sustainable services. Taxi data analysis
provides us a prompt channel of information to gain insights of urban mobility and city dynamics,
even though in the presence of many challenges on how to extract insights of urban mobility and
city dynamics from the information and make them useful to stakeholders.

In this paper, we conduct a systematic analysis on taxi trip data to uncover urban mobility
and city dynamics in multimodal transportation environments. We use a large-scale taxi origin-
destination (O-D) trip data in Washington DC area as our main data source, and some other data
from Open Data DC, the Maps API and the developer API as additional data sources. After an
analysis on fundamental taxi trip characteristics, we apply data visualization, data analysis, statis-
tical analysis and data fusion to investigate �ve important aspects from taxi trip data, where three
concern urban mobility (respectively mobility and cost including e�ect of tra�c congestion, trip
safety, and multimodal connectivity), and two pertain to city dynamics (respectively transporta-
tion resilience, and the relation between trip patterns and land use). For each aspect, we uncover
patterns and implications from taxi trip data, then explore the results to discuss qualitative and
quantitative impacts of the inputs from key stakeholders on available measures of e�ectiveness on
urban mobility and city dynamics, where key stakeholders include road users, system operators,
and city planners and policymakers. At the end of the study, we summarize our �ndings to briey
discuss how to take advantages of the uncovered urban mobility and city dynamics to provide
data-driven supports to key stakeholders in multimodal transportation environments.

2. Data Description

The DC Taxicab trip data contains the taxi trips for either pick up or drop o� locations within
District of Columbia (DC), which can be downloaded from Open Data DC provided by O�ce
of the Chief Technology O�cer (OCTO), DC [25]. The data is provided by the Department of
For-Hire Vehicles (DFHV) of DC, and does not include car-sharing vehicles such as Lyft or Uber.
The information of each trip can be represented with a tuple < lo; ld; to; tod; dod; cod >, where lo
and ld are respectively the pickup and dropo� locations, to and tod are respectively the pickup time
(rounded to the nearest hour) and the whole trip time (in minutes), dod and cod are respectively the
trip distance (in miles) and the total trip cost (in $) including meter fare, tip, surcharge, tolls, and
extras. There are no vehicle identi�ers in the data set. We consider the data in a one-year period
between [2015-09-01, 2016-08-31] for this study, which includes totally 14.34 million Taxicab trips.

We also use the following data sources: (1) The crash data of DC taxicabs between [2015-09-01,
2016-08-31] in Open Data DC for extracting taxi safety information; (2) The Maps API of Google
[14] for extracting walk time information between locations; and (3) The developer API of [10] for
extracting land use information.
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Corresponding to spatial data processing and analysis, we use grid decomposition [5] in many
cases to map geolocations into two dimensional grids for a better visualization or statistics. Specif-
ically, we use the k-digit grid decomposition as shown in the De�nition 2.1.

De�nition 2.1 (k-Digit Grid Decomposition). To transform geolocation to grid in spatial
representation, the two values of each geolocation are respectively rounded to k signi�cant digits
(k � 0) along latitude and longitude, i.e. the grid width and length are both 10�k decimal degree
along latitude and longitude.

The larger k is, the smaller each grid is (also the larger the number of grids is). In this paper, we
consider k 2 f2; 3g, which are respectively at the scales of neighborhoods and streets approximately.

3. Basic Trip Characteristics

We study basic characteristics of taxi trips by exploring their temporal and spatial distributions
and by analyzing their probability distributions as functions of the key trip attributes such as trip
distance, trip time, and trip cost.

Fig. 1a shows hourly taxi trip rates of both weekday (in blue) and weekend (in red), where
each trip rate is computed with the number of trips averaged by its number of associated days.
For weekday, although high taxi trip rate occurs during common working hours and the high rate
continues even for a few after-work hours, no obvious AM or PM peak is expressed in the hour-
of-day distribution of taxi trip rates, which indicates that commuting may not be the primary
function of taxi trips. For weekend, a high value of taxi trip rate is shown during midnight. This
is consistent with our common sense that taxi trip may play a signi�cant role for night life of
weekend. Fig. 1b gives the comparison of hourly taxi trip rates among di�erent seasons, which
clearly shows some seasonal variations in the taxi trip rates.

Fig. 1c gives the spatial distribution of taxi trip rates by pickup locations, where pickup locations
are decomposed with k-digit grids using k = 3 (see De�nition 2.1). In Fig. 1c, each circle represents
the center of a pickup location decomposed with 3-digit grid, and its color represents the range of
averaged daily taxi trip rate (i.e. averaged daily number of taxi trips) in log10 corresponding to the
pickup location. As shown in the �gure, the di�erence in the values of averaged daily taxi trip rate
could reach even several orders of magnitude among di�erent pickup locations. Fig. 1d shows the
spatial distribution of the top 1000 highest O-D pairs in the ranking of taxi trip rates, where all
O-D locations are decomposed with k-digit grids using k = 2. In Fig. 1d, each line represents an
O-D pair, and its color represents the range of averaged daily taxi trip rate in log10 corresponding
to the O-D pair. As shown in the �gure, the top 1000 highest O-D pairs ranking in taxi trip rates
are clustered around the central business district of DC.

Fig. 2 shows the empirical Probability Density Functions (PDFs) and Cumulative Distribution
Functions (CDFs) of distance, time, and cost of taxi trips. In the statistical analysis, we exclude
the outliers with tod � 0, dod � 0 and cod � 0. We �nd that each of the three empirical PDFs can
be well �tted with a lognormal distribution as shown below,

F (xj�; �) = (x�
p

2�)�1 exp(�(ln x � �)2

2�2
); (1)

where x is a key trip attribute such as trip distance, time, and cost, and the parameters � and �
are estimated using a global optimization algorithm [47] minimizing the least squares between the
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Figure 1: Temporal and Spatial Distributions of Taxi Pickup Trips.

data and the �tting function. For the three empirical PDFs, the parameters (�, �) are respectively
(0.7623, 0.9223), (2.4555, 0.6004), and (2.4326, 0.4564), and the root-mean-square errors (RMSE)
are respectively 1.51E-3, 6.75E-4, and 1.54E-3. The trip distance distribution gives the median
and the 90th percentile of taxi trip distance as 1.68 and 5.72 miles, respectively. The trip time
distribution gives the median and the 90th percentile of taxi trip time as 10.96 and 23.40 minutes,
respectively. The trip fare distribution gives the median and the 90th percentile of taxi trip cost
as $11.01 and $22.85, respectively.

The two-parameter models on trip distance and time that are extracted from the taxi data
in the DC area are consistent and complementary with the other recent works of the taxi data
analysis in a few di�erent cities [38, 53]. The lognormal distributions were found the best �ttings
to the trip distance and time of taxi services respectively by [38] for Harbin City and by [53] for
the New York City and two other cities of China. Moreover, our study shows that the trip cost
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of taxi services also follows the same parametric model. From the viewpoint of multimodal trip
planning, the information of trip distance, time and cost is crucial for road users to make choice
decision on transportation modes and travel routes. The two-parameter model is also useful for
simulation studies on providing inputs. In addition, the model can be used for delivering a robust
estimate of the mean value as exp(� + 0:5 � �2) in case that there exist signi�cant outliers in data.
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(c) Empirical PDF of Trip Time.
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(d) Empirical CDF of Trip Time.
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(f) Empirical CDF of Trip Cost.

Figure 2: Statistics of Distance, Time, and Cost of Taxi Trips.

4. Mobility and Cost: E�ect of Tra�c Congestion

Mobility and cost are two key factors to consider as people plan their travels. Fig. 3 shows
the comparisons of empirical CDFs of taxi trip speed (in mph) and cost (in $/min and $/mile)
among di�erent Times of Day (ToDs) and among di�erent distances respectively, where the CDFs
by ToDs are averaged over every three hours of day, and the CDFs by distance are averaged over

6



every mile within �ve miles. For each panel of Fig. 3, we apply two-sample Kolmogorov-Smirnov
tests on each pair of empirical CDFs to check if their di�erence in distributions is statistically
signi�cant. All the test results show that p-values approach to 0, turning out that in each panel of
Fig. 3, any two CDFs are di�erent in statistical signi�cance.
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(a) Taxi Trip Speed Distribution by ToDs.
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(b) Taxi Trip Speed Distribution by Distances.
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(d) Taxi Trip Cost Distribution by Distances.

Figure 3: Distributions of Speed and Cost of Taxi Trips by ToDs and Distances.

For each taxi trip i, the average speed is calculated as viod = diod=tiod. Fig. 3a shows the empirical
CDFs of taxi trip speed at di�erent ToDs. During 3-6 AM, the taxi trip speed is the highest, where
the median and 90th percentile of speed are 18.16 and 32.01 mph, respectively (see the rightmost
curve in Fig.3a). During 15-18 PM, the taxi trip speed is the lowest, where the median and 90th
percentile of speed are 9.94 and 19.71 mph, respectively (see the leftmost curve in Fig.3a).

Taxicabs can be seen as \oating cars" in urban tra�c ows. Thus, speed of taxi trips can
vary largely between di�erent ToDs due to distinct urban congestion situations in tra�c network.
For measuring the impact of urban congestion, the taxi-based congestion index (TCI) is de�ned as

TCI = ~V max
ToD = ~VToD; (2)

where ~V max
ToD and ~VToD are respectively the maximum median speed of all ToDs and the median

speed of a speci�c ToD. Here ~V max
ToD can be seen as the speed in free ow. During a speci�c

ToD, it is more congested if its ~VToD is lower, which leads to a higher TCI. For the DC area, the
maximum TCI in a day is then TCImax=1.83, as ~VToD is the lowest during 15-18 PM. Monitoring
and understanding tra�c congestion conditions of a city is critical for better urban planning. In
the Urban Congestion Reports (UCR) by Federal Highway Administration (FHWA) [8], the Travel

Time Index (TTI) is de�ned as T T=T TO, where T T and T TO are respectively the average travel

7



time and free-ow travel time. TCI provides an alternative way to measure congestion, without
requiring extensive tra�c ow data from roadway sensors or track data from probing vehicles.

Fig. 3b shows the empirical CDFs of taxi trip speed for every mile within �ve miles in trip
distance. It is shown that short-distance trips are slower than long-distance trips. This is likely
due to the facts that taxi cabs often take arterial or highway for long-distance trips while have to
use congested urban streets for short-distance trips most time. The median speeds are respectively
8.53, 10.54, 11.91, 14.53, and 18.31 mph corresponding to the taxi trip distance from one mile to
�ve miles. Both Fig. 3a and 3b show that a majority of taxi trips have a rather low median speed.
In urban areas, tra�c congestion is often serious due to the high density of intersections. The
ine�cient urban mobility might be vastly optimized and improved in practice by adopting some
smart urban tra�c control systems [27, 46, 48].

Fig. 3c shows the empirical CDFs of taxi trip fares at di�erent ToDs. The average highest and
lowest taxi fares are respectively corresponding to the time period of 3-6 AM (the rightmost curve
in Fig. 3c, concerning the least congested ToD as shown in Fig.3a) and 15-18 PM (the leftmost
curve in Fig. 3c, concerning the most congested ToD as shown in Fig.3a), and their medians are
respectively $1.27 and $0.97 per minute. This result is consistent with the recent study showing
that the congestion often reduces the income of taxi drivers [55].

Fig. 3d shows the CDFs of taxi trip fares for every mile within �ve miles in trip distance. As
shown in the �gure, the shorter the trip distance, the higher the fare rate (i.e. fare per mile) is. As
trip distance increases, taxi fare rate drops and will �nally converge to a cost limit. Thus taxi is
often considered by road users as a convenient and fast service for medium-to-long distance trips
as compared to other transportation modes.

From a conventional viewpoint, taxi service in urban area seems to be in a dilemma | it is
di�cult for road users to take a taxi during tra�c peak time, whilst the increase of taxi services
leads to more tra�c congestion [37]. However, from another more recent viewpoint of Mobility-as-
a-Service (MaaS) [17], taxi system (along with other for-hire vehicle and shared mobility systems)
in fact greatly helps reducing urban congestion as well as VMT. This is because in multimodal
transportation environments, taxi services can provide pooled rides [35] and connect with other
modes to make trips taken in a more sustainable way. As measures of e�ectiveness (MoE) on urban
mobility and trip costs, Fig. 3 is valuable for key stakeholders of taxi services such as road users,
taxi drivers and operators, and city’s urban planners and policymakers, as it can help them making
better decisions on corresponding activities, operations, and policies, such as whether and when to
choose taxi as travel mode, when and how to operate taxi services, how to plan and regulate taxi
services, and etc.

5. Trip Safety

Although taxi drivers are often considered as more experienced than normal drivers, a quite
large amount of tra�c violations and road crashes are found regarding to taxi drivers [44]. Taxi
drivers were shown to have a higher probability of speeding at the onset of yellow phase and of
red-light running (RLR) at intersections [44]. In addition, taxi drivers were shown to more likely
be severely injured than normal drivers [4].

According to the crash data in Open Data DC, there were 2,209 crashes involving taxicabs,
among totally 28,730 vehicle crashes in DC during the studied period of [2015-09-01, 2016-08-31].
As shown in Fig. 4a, the spatial distribution is rather wide on the locations corresponding to taxi-
related tra�c crashes. To better understand taxi-related tra�c crash probability of each location
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(a) Taxi Crash Locations in DC. (b) Crash Hotspots & Heatmap of Taxi Pickups.
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Figure 4: DC Taxi-related Crashes and the Relevance with DC Taxi Demands.

in DC, we perform a statistical analysis on the crash data. For each taxi-related tra�c crash, we
�rst decompose its location using 3-digit grid decomposition (see Def.2.1) to obtain its grid at the
scale of streets approximately. Next, we group all crashes according to their grids and count crash
number of each grid. Finally, for each crash number, we sum up all the corresponding grids to count
the total number of grids for the crash number, i.e. the frequency of the crash number. Fig. 4c
gives the frequencies of crash numbers in DC between [2015-09-01, 2016-08-31]. Notice that crash
probability can be calculated from frequencies of crash numbers through a simple normalization
over the total number of grids. As shown in Fig. 4c, the data can be �tted to a straight line in a
log-log model with two coe�cients �0 and �1, i.e.,

log(Frequency) = �0 + �1 log(Number of Crashes); (3)

meaning that crash probability follows a common pattern of the scale-free law in the physical and
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social sciences [13, 49]. In one side, the high-accident locations (associated with large numbers of
crashes in Fig. 4c) are subject to a small portion of streets. This means that if we could focus
on the small group of high-accident streets and could put more safety precautions and endeavors
such as enforcements, educations and engineering e�orts on them to reduce crashes, transportation
safety would be greatly improved. In another side, a large amount of streets are shown to have
a small number of crashes, implying that the goal of decreasing crash number to zero would be
challenging.

Recent years, more and more cities have adopted Vision Zero [18, 39], a project aiming to achieve
a highway system with no fatalities or serious injuries involving road tra�c. It is a�rmative to see
more cities hold the vision that \Life and health can never be exchanged for other bene�ts within
the society’ rather than the conventional comparison between costs and bene�ts on tra�c safety,
and the realization of Vision Zero in cities could be bene�ted from some innovative solutions, e.g.,
the smart Internet of things (IoT) [45, 52] and big data analysis of tra�c crashes [51].

To further explore the high-crash locations, we show the crash hot spots of taxi cabs in Fig.
4b, where heatmap of the taxi pick-up ows from Fig. 1c is included to observe if there is any
correlation between tra�c crash and trip demand. The statistically signi�cant crash hot spots
are extracted with the results of z-scores from the Gi* statistic by Ord and Getis [26] with 95%
and 99% con�dences respectively. The heatmap is computed using kernel density estimation. Fig.
4b indicates that most of crash hot spots are located at the regions with a high trip demand. To
further quantitatively study the correlation between taxi crash probability and taxi pickup demand,
we combine the statistical analysis with 3-digit grid decomposition for Fig. 4c and Fig. 1c. For
each grid, we can get its number of taxi crashes from the analysis for Fig. 4c and its taxi pickup
demand from Fig. 1c. We estimate taxi pickup demand of each grid using the average pickup rates
of its (2 � n + 1)2 nearest-neighbor grids with a cuto� range of [�n; n] grids along both latitude and
longitude. Here we use n = 1 in this paper. Fig. 4d shows the relationship between the numbers of
taxi crashes and the taxi pickup demands in 3-digit grids, i.e. at about the street scale. As shown
in the �gure, the growth in tra�c demand may increase the probability of crashes occurring, but
not always. Fig. 4d indicates that high tra�c demand is a necessary but not a su�cient condition
causing a high probability of crashes. It would be valuable to study the features of the low-crash
zones with high tra�c demand and apply the obtained knowledge for reducing crashes.

6. Multimodal Connectivity

Delivering excellent connectivities between di�erent tra�c modes is a key to maintain the e�-
ciency of a multimodal transportation system. Fig. 5 shows the walk-time and spatial distributions
from any taxi pickup location to its nearest Capital Bikeshare or nearest Metro stations, where
the walk time is retrieved using Google Maps API. The probability of the walk time from a taxi
pickup location to its nearest station is computed with the method as shown below:

1. Transform geolocations to two dimensional grids with k-digit grid decomposition (see Def.2.1),
where k = 2 (i.e., at about the neighborhood scale) is used to decrease the data retrieving
cost in using Google Maps API but retain su�ciently �ne granularity.

2. For each grid in map, retrieve its minimum walk time to the station among the K nearest
stations (K = 20 by default) in the straight line distance from Google Maps API.

3. Let M(t) be the set of grid indices, where for each grid gm with m 2 M(t), the minimal walk
time from the grid to a station is t (for which we use binned time in one-minute intervals).
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Let Cp(gm) be the number of taxi pickups (i.e. actual demand) in each grid gm. Then the
probability mass functions of the walk-time distributions respectively for uniform demand
and for actual demand can be calculated as

Fud(t) =
jM(t)jP
t jM(t)j ; Fad(t) =

P
m2M(t) Cp(gm)

P
t

P
m2M(t) Cp(gm)

: (4)

Figs. 5a and 5b give the comparisons of CDFs of the walk-time distributions between uniform
demand (red) and actual demand (blue) on connectivity from taxi pickup locations to Capital
Bikeshare and Metro stations respectively. Figs. 5c and 5d give the spatial distributions of Capital
Bikeshare and Metro stations respectively in the DC area, where the actual demand on connectivity
(i.e. the heatmap of taxi pickups) is also shown in both of the �gures.
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(a) Walk Time to Bikeshare Stations.
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(b) Walk Time to Metro Stations.

(c) Taxi Pickup Heatmap & Bikeshare Stations. (d) Taxi Pickup Heatmap & Metro Stations.

Figure 5: Walk-Time Distributions from Taxi Pickup Locations to Bikshare or Metro Stations and Spatial Distribu-
tions of Bikshare and Metro Stations & Taxi Pickup Heatmap.
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As shown in Figs. 5a and 5b, all the walk-time CDFs of actual demand (blue) is on the top
left of those of uniform demand (red). It proves that accessibility in connections from taxi to other
transportation modes has a strong positive impact on taxi demand. More accessibility to connect
other transportation modes a location has, more taxi demands it has. The data shows that 50%
and 90% taxi passengers in DC can access the nearest bikeshare station in 2.97 and 7.26 minutes
respectively (see Fig. 5a), and can access the nearest metro station in 9.83 and 29.13 minutes
respectively (see Fig. 5b). We �nd that the distributions of the walk time from any taxi drop-o�
location to the nearest stations are similar to the results using taxi pickup locations. The analysis
results are independent from the choice of using taxi pickups or drop-o�s or both.

In a multimodal environment, accessibility in connections between di�erent modes has signif-
icant impacts on users to select which transportation modes to use. The impacting factors on
accessibility in connectivity include level of convenience, costs, speed, distance and etc. Trans-
portation policy makers might have to consider all the impacting factors if expecting people use
more sustainable transportation modes such as bike ride or public transits, rather than private
cars. Let us take an example on replacing vehicle by bike. As shown in Fig. 3a, taxi speed is rather
low during rush hours in DC, so are the other vehicles. In this case, many road users would change
their transportation mode to bike ride during rush hours given their trips are not long-distance.
In fact, many taxi trips are short-distance demands in DC (see Fig. 2), therefore it is feasible for
road users in DC to replace some of taxi trips with bike rides. Beyond improving sustainability of
DC, this transportation mode shift could greatly reduce tra�c congestion.

In most cases, it is not easy for road users to replace private cars directly with public transits.
The comparison between Fig. 5a and Fig.5b shows that the walk time (reecting the distance) for
road users to access the nearest Metro stations is likely much longer than to bikeshare stations.
Concerning connection with public transit, both taxi and bike trips are turned out to be very
helpful on providing convenient intermediate or last-mile solutions [41]. However, the fare of taxi
might be one barrier for some road users on choosing taxi as their connection mode to metro. As
shown in Fig. 3d, the fare of taxi for short-distance trip is much higher than that for long-distance.
In this case, if these road users dislike biking either, it would be hard for them to choose metro
as their transportation mode. Reduction in the fare of taxi might be realized through improving
e�ciency of the taxi system [57], where either the balance between demand and supply could be
optimized leading to less empty trips [59], or the rate of ride sharing could be increased on each
individual taxi trip [36].

7. Transportation Resilience

An urban transportation system might su�er various levels of disruptions or extreme events due
to many reasons such as emergency maintenance and extreme weathers. Transportation resilience
is de�ned to evaluate its responsive ability to a disruption or extreme event, where the static
resilience often refers to a transportation system’s capability of maintaining its basic function
during a major perturbation, while the dynamic resilience refers to how quickly a transportation
system can recover its state of normal function after a major perturbation [7, 23].

On 03-16-2016 (Wednesday), the DC Metrorail system, which is the backbone of DC public
transportation systems, was entirely shutdown for emergency repairs. The impact of this major
disruption was investigated by a systematic research [29]. The research revealed that vehicle
volumes, bus ridership, and Capital Bikeshare ridership all increased in the regional core area, but
did not study taxi and other ride-sharing systems.
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Here we investigate the role of taxi system as one mode of multimodal transportation on
preserving resilience of a city-scale transportation network. Fig. 6 shows the impact of this major
disruption on taxi trips by comparing the results on 03-16-2016 and the results of a four-Wednesday
average (two Wednesdays before and two Wednesdays after the disruption). The volume of taxi
trips on 03-16-2016 increased 23.2% in comparison with that of the four-Wednesday average (see
Fig. 6a), while the median time of taxi trips increased 22.4% from 11.53 to 14.11 minutes (see
Fig. 6b). These elastic changes reect that the taxi system played a signi�cant function on help
preserving the transportation resilience as such a major disruption occurred.
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(a) Changes in Taxi Trip Volumes.
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(b) Changes in Trip Time Statistics.

Figure 6: Changes of Taxi Trips due to Metrorail Shutdown on 03-16-2016.

In January of 2016, the blizzard \Snowzilla" [43] caused signi�cant snowfall and blizzard con-
ditions, and a snow emergency was declared in the DC area. The Washington Metropolitan Area
Transit Authority (WMATA) suspended all Metrorail and Metrobus service between 01-23-2016
and 01-24-2016. Capital Bikeshare closed its stations between 01-23-2016 and 01-26-2016. Fig. 7a
shows the taxi trip volumes in the blizzard week (from 01-21-2016 to 01-28-2016, in red color) and
a normal week (from 01-07-2016 to 01-14-2016, in blue color). For indicating temporal resilience,
Fig. 7b shows the hourly ratios rh between the two weeks as de�ned in Eq. 5,

rh =
Taxi Volume for Each Hour in the Blizzard Week

Taxi Volume for Each Hour in the Normal Week
: (5)

Figs. 8a{8h give the spatial distributions of taxi pickups for each day in the blizzard week, where
pickup locations are decomposed with k-digit grids using k = 3 (see De�nition 2.1). In Figs. 8a{8h,
each circle represents the center of a pickup location decomposed with 3-digit grid, and its color
represents the range of daily taxi pickup rate in log10 corresponding to the pickup location.

As shown in Fig. 7a, the taxi ridership suddenly dropped down from the afternoon of Friday
(01-22-2016). On Saturday (01-23-2016), though only a few taxi trips were taken (see Fig. 7a), the
service of taxi transportation system covered a substantial region of DC (see Fig. 8c). On Sunday
(01-24-2016), there were a large amount (13.7% of the normal state) of taxi trips (see Fig. 7a), and
the taxi system recovered its function in the major urban areas of DC (see Fig. 8d)). During these
two weekend days (01-23-2016 and 01-24-2016), the taxi system worked as a single transportation
mode, because Metrorail, Metrobus, and Capital Bikeshare did not operate. The volume of taxi
trips returned to 47.5% of its normal state on Monday (01-25-2016), and it gradually reached to
the complete normal state on Thursday (01-28-2016), see Fig. 7a. During the recovery period, the
increase in the tra�c demands using the taxi system was partly contributed by the major customer
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(a) Taxi Pickup Volumes in the Blizzard Week (01-21 to 01-28) and a Normal Week (01-07 to 01-14).
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(b) Hourly Ratios of Taxi Pickup Volumes between the Blizzard Week and the Normal Week.

Figure 7: Temporal Taxi Pickup Distributions: Comparison b etween the Blizzard Week and a Normal Week in 2016.

(a) 01-21-2016:rg3=1.07 (b) 01-22-2016:rg3=0.94 (c) 01-23-2016:rg3=0.07 (d) 01-24-2016:rg3=0.44

(e) 01-25-2016:rg3=0.78 (f) 01-26-2016:rg3=0.90 (g) 01-27-2016:rg3=1.02 (h) 01-28-2016:rg3=1.07

Figure 8: Spatial Taxi Pickup Distributions and r g3 Values in the Week of January 2016 Blizzard Snowzilla.
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