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Abstract

We perform a systematic analysis on the large-scale taxi trip data to uncover urban mobility and
city dynamics in multimodal urban transportation environments. As a case study, we use the taxi
origin-destination trip data and some additional data sources in Washington DC area. We first
study basic characteristics of taxi trips, then focus on five important aspects. Three of them con-
cern urban mobility, which are respectively mobility and cost including effect of traffic congestion,
trip safety, and multimodal connectivity; the other two pertain to city dynamics, which are re-
spectively transportation resilience and the relation between trip patterns and land use. For these
aspects, we use appropriate statistical methods and geographic techniques to mine patterns and
characteristics from taxi trip data for better understanding qualitative and quantitative impacts of
the inputs from key stakeholders on available measures of effectiveness on urban mobility and city
dynamics, where key stakeholders include road users, system operators, and city. Finally, we briefly
summarize our findings and discuss some critical roles and implications of the uncovered patterns
and characteristics from the relation between taxi system and key stakeholders. The results can
support road users by providing evidence-based information of trip cost, mobility, safety, multi-
modal connectivity and transportation resilience, can assist taxi drivers and operators to deliver
transportation services in a higher quality of mobility, safety and operational efficiency, and can
also help city planners and policy makers to transform multimodal transportation and to manage
urban resources in a more effective and better way.

Keywords: Urban Mobility, Spatial and Temporal Analysis, Taxi Origin-Destination (O-D)
Trips, Transportation Data Analysis, Multimodal Urban Transportation

1. Introduction

More than half of the world’s population lives in cities now, and estimated 65-70% of the
world’s population will live in cities by 2050 [40]. The swell in urban populations puts significant
pressure on urban transportation systems, and there has been increasing interest in gaining a
better understanding on the urban mobility and city dynamics for achieving sustainable urban
transportation systems [2, 19]. Accompanied by the city development and transformation, the taxi
industry, as one of essential mode in multimodal urban transportation systems, has kept growing
with a fast-paced evolution in many recent years.
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Serving diverse transportation demands from a large number of people and often equipped
with Global Positioning System (GPS) devices, taxi cabs become participatory sensors generating
a huge amount of data with massive spatio-temporal information on human activity and mobility.
Extensive research has been conducted using taxi trip data [5, 9]. Some work focused on under-
standing fundamental human mobility patterns and statistics. [42] studied the common regularity
of intra-city human mobility by taxi through a empirical comparative analysis. Peng et al. [28]
found that people’s travels on workdays using taxi follow a few primary flow patterns. [38] use
observed origin-destination (OD) matrix to model the traffic distribution patterns.

Other studies drew attentions to urban mobility and city dynamics. On urban mobility, most
research aimed to extract traffic and transportation dynamics through data analysis of taxi trips, as
according to which beneficial applications could be found and provided to road users or stakehold-
ers. Geroliminis and Daganzo [12] revealed urban-scale macroscopic fundamental diagrams using
taxi trips. Zhan et al. [56] presented a method to estimate possible linked travel time in urban
road networks using the OD trip data of taxis. Yang et al. [54] proposed a smart driving direction
and route planning system to leverage the experience of taxi drivers on choosing driving directions.
[32] and [59] found that taxi services are well mutual complementary with other transportation
modes such as airport and public transits in multimodal urban traffic environments. Donovan
and Work [7] proposed quantitative methods measuring the resilience of transportation systems,
by using the deviations of historical distribution in normalized travel time of taxi among various
regions of a city. Regarding traffic congestion — a significant problem in major cities [33], a few
studies [11, 31, 55] presented pricing schemes to support offering taxi drivers extra incentives so
that they would work in congested peak hours. Concerning road safety, Boufous and Williamson
[4] and Wu et al. [44] investigated some safety issues of taxi trips.

On city dynamics, researchers targeted to gain more insights on social dynamics and urban
structures [1, 5]. Ref. [30] revealed that urban forms have significant impact on urban taxi ridership.
Liu et al. [21] interpreted the spatial and temporal patterns observed in intra-urban human mobility
through integrating spatial heterogeneity and distance decay of trips. Shen et al. [34] and Zhang
et al. [58] used taxi data to identify points of interest (POIs) and statistically significant spatial
clusters based on hot spot analysis. Guo et al. [15] detected location characteristics and spatial
structures from spatial and temporal patterns in the taxi trip movements. Liu et al. [22] linked
the temporal variations in taxi pick-ups and drop-offs with various land use features. Liu et al.
[20] identified sub-regional structures by exploring the inherent connection between travel patterns
and city structure. Zhang et al. [58] revealed intra-urban travel patterns and service ranges by
analyzing taxi trajectories. Zhu et al. [60] clustered street types based on their dynamic functions.

It is important to understand multimodal urban mobility from the viewpoint of taxi services.
The significance is threefold. First, taxicabs are mixed with other motor vehicles in traffic flows
and face the same traffic congestion problem on urban road networks. Thus the taxi trip data can
serve as suitable source for measuring the impact of urban congestion on mobility and trip cost.
Notice that the mobility is similar between taxicabs and passenger vehicles as they are mixed in
traffic, whereas the trip cost of using taxi services is normally higher than that of using public
transit services. Second, taxi services, along with the broader ridesharing services [6], represent a
class of shared-use mobility with the for-hire vehicles serving the travelers who do not own or use
their private vehicles. As traffic congestion and vehicle emissions are two serious problems for most
major cities nowadays, there is an increasing need to encourage the less use of private vehicles [3, 17]
for reducing the total vehicle miles of travel (VMT) and making urban transportation to be more
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sustainable. Understanding the role of taxi services in multimodal transportation is essential for
fostering the process of mode shift in transportation. For this purpose, we need to measure basic
metrics including mobility, cost and safety of taxi trips and the multimodal connectivity in urban
environments. Third, the taxi mode has high accessibility and flexibility, since taxi services are not
constrained to pre-specified origins and destinations in comparison with the users of public transit
services. The broad sampling of OD trips enable us to study the collective behaviors of road
users from their movements in the city, which is very valuable for elevating the comprehension
of urban dynamics on the issues corresponding to system complexity such as the resilience of
transportation systems and the relations between trip patterns and urban structures. In brief,
a complete understanding on urban mobility and city dynamics is crucial for transforming cities
to smart cities delivering effective, efficient, resilient, and sustainable services. Taxi data analysis
provides us a prompt channel of information to gain insights of urban mobility and city dynamics,
even though in the presence of many challenges on how to extract insights of urban mobility and
city dynamics from the information and make them useful to stakeholders.

In this paper, we conduct a systematic analysis on taxi trip data to uncover urban mobility
and city dynamics in multimodal transportation environments. We use a large-scale taxi origin-
destination (O-D) trip data in Washington DC area as our main data source, and some other data
from Open Data DC, the Maps API and the developer API as additional data sources. After an
analysis on fundamental taxi trip characteristics, we apply data visualization, data analysis, statis-
tical analysis and data fusion to investigate five important aspects from taxi trip data, where three
concern urban mobility (respectively mobility and cost including effect of traffic congestion, trip
safety, and multimodal connectivity), and two pertain to city dynamics (respectively transporta-
tion resilience, and the relation between trip patterns and land use). For each aspect, we uncover
patterns and implications from taxi trip data, then explore the results to discuss qualitative and
quantitative impacts of the inputs from key stakeholders on available measures of effectiveness on
urban mobility and city dynamics, where key stakeholders include road users, system operators,
and city planners and policymakers. At the end of the study, we summarize our findings to briefly
discuss how to take advantages of the uncovered urban mobility and city dynamics to provide
data-driven supports to key stakeholders in multimodal transportation environments.

2. Data Description

The DC Taxicab trip data contains the taxi trips for either pick up or drop off locations within
District of Columbia (DC), which can be downloaded from Open Data DC provided by Office
of the Chief Technology Officer (OCTO), DC [25]. The data is provided by the Department of
For-Hire Vehicles (DFHV) of DC, and does not include car-sharing vehicles such as Lyft or Uber.
The information of each trip can be represented with a tuple < lo, ld, to, tod, dod, cod >, where lo
and ld are respectively the pickup and dropoff locations, to and tod are respectively the pickup time
(rounded to the nearest hour) and the whole trip time (in minutes), dod and cod are respectively the
trip distance (in miles) and the total trip cost (in $) including meter fare, tip, surcharge, tolls, and
extras. There are no vehicle identifiers in the data set. We consider the data in a one-year period
between [2015-09-01, 2016-08-31] for this study, which includes totally 14.34 million Taxicab trips.

We also use the following data sources: (1) The crash data of DC taxicabs between [2015-09-01,
2016-08-31] in Open Data DC for extracting taxi safety information; (2) The Maps API of Google
[14] for extracting walk time information between locations; and (3) The developer API of [10] for
extracting land use information.
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Corresponding to spatial data processing and analysis, we use grid decomposition [5] in many
cases to map geolocations into two dimensional grids for a better visualization or statistics. Specif-
ically, we use the k-digit grid decomposition as shown in the Definition 2.1.

Definition 2.1 (k-Digit Grid Decomposition). To transform geolocation to grid in spatial
representation, the two values of each geolocation are respectively rounded to k significant digits
(k ≥ 0) along latitude and longitude, i.e. the grid width and length are both 10−k decimal degree
along latitude and longitude.

The larger k is, the smaller each grid is (also the larger the number of grids is). In this paper, we
consider k ∈ {2, 3}, which are respectively at the scales of neighborhoods and streets approximately.

3. Basic Trip Characteristics

We study basic characteristics of taxi trips by exploring their temporal and spatial distributions
and by analyzing their probability distributions as functions of the key trip attributes such as trip
distance, trip time, and trip cost.

Fig. 1a shows hourly taxi trip rates of both weekday (in blue) and weekend (in red), where
each trip rate is computed with the number of trips averaged by its number of associated days.
For weekday, although high taxi trip rate occurs during common working hours and the high rate
continues even for a few after-work hours, no obvious AM or PM peak is expressed in the hour-
of-day distribution of taxi trip rates, which indicates that commuting may not be the primary
function of taxi trips. For weekend, a high value of taxi trip rate is shown during midnight. This
is consistent with our common sense that taxi trip may play a significant role for night life of
weekend. Fig. 1b gives the comparison of hourly taxi trip rates among different seasons, which
clearly shows some seasonal variations in the taxi trip rates.

Fig. 1c gives the spatial distribution of taxi trip rates by pickup locations, where pickup locations
are decomposed with k-digit grids using k = 3 (see Definition 2.1). In Fig. 1c, each circle represents
the center of a pickup location decomposed with 3-digit grid, and its color represents the range of
averaged daily taxi trip rate (i.e. averaged daily number of taxi trips) in log10 corresponding to the
pickup location. As shown in the figure, the difference in the values of averaged daily taxi trip rate
could reach even several orders of magnitude among different pickup locations. Fig. 1d shows the
spatial distribution of the top 1000 highest O-D pairs in the ranking of taxi trip rates, where all
O-D locations are decomposed with k-digit grids using k = 2. In Fig. 1d, each line represents an
O-D pair, and its color represents the range of averaged daily taxi trip rate in log10 corresponding
to the O-D pair. As shown in the figure, the top 1000 highest O-D pairs ranking in taxi trip rates
are clustered around the central business district of DC.

Fig. 2 shows the empirical Probability Density Functions (PDFs) and Cumulative Distribution
Functions (CDFs) of distance, time, and cost of taxi trips. In the statistical analysis, we exclude
the outliers with tod ≤ 0, dod ≤ 0 and cod ≤ 0. We find that each of the three empirical PDFs can
be well fitted with a lognormal distribution as shown below,

F (x|µ, σ) = (xσ
√
2π)−1 exp(−(lnx− µ)2

2σ2
), (1)

where x is a key trip attribute such as trip distance, time, and cost, and the parameters µ and σ
are estimated using a global optimization algorithm [47] minimizing the least squares between the
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Figure 1: Temporal and Spatial Distributions of Taxi Pickup Trips.

data and the fitting function. For the three empirical PDFs, the parameters (µ, σ) are respectively
(0.7623, 0.9223), (2.4555, 0.6004), and (2.4326, 0.4564), and the root-mean-square errors (RMSE)
are respectively 1.51E-3, 6.75E-4, and 1.54E-3. The trip distance distribution gives the median
and the 90th percentile of taxi trip distance as 1.68 and 5.72 miles, respectively. The trip time
distribution gives the median and the 90th percentile of taxi trip time as 10.96 and 23.40 minutes,
respectively. The trip fare distribution gives the median and the 90th percentile of taxi trip cost
as $11.01 and $22.85, respectively.

The two-parameter models on trip distance and time that are extracted from the taxi data
in the DC area are consistent and complementary with the other recent works of the taxi data
analysis in a few different cities [38, 53]. The lognormal distributions were found the best fittings
to the trip distance and time of taxi services respectively by [38] for Harbin City and by [53] for
the New York City and two other cities of China. Moreover, our study shows that the trip cost
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of taxi services also follows the same parametric model. From the viewpoint of multimodal trip
planning, the information of trip distance, time and cost is crucial for road users to make choice
decision on transportation modes and travel routes. The two-parameter model is also useful for
simulation studies on providing inputs. In addition, the model can be used for delivering a robust
estimate of the mean value as exp(µ+ 0.5 · σ2) in case that there exist significant outliers in data.
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(b) Empirical CDF of Trip Distance.
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(c) Empirical PDF of Trip Time.
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(d) Empirical CDF of Trip Time.

Fitting
Empirical

Fare ($)

P
ro
b
a
b
il
it
y

6050403020100

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

(e) Empirical PDF of Trip Cost.
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(f) Empirical CDF of Trip Cost.

Figure 2: Statistics of Distance, Time, and Cost of Taxi Trips.

4. Mobility and Cost: Effect of Traffic Congestion

Mobility and cost are two key factors to consider as people plan their travels. Fig. 3 shows
the comparisons of empirical CDFs of taxi trip speed (in mph) and cost (in $/min and $/mile)
among different Times of Day (ToDs) and among different distances respectively, where the CDFs
by ToDs are averaged over every three hours of day, and the CDFs by distance are averaged over
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every mile within five miles. For each panel of Fig. 3, we apply two-sample Kolmogorov-Smirnov
tests on each pair of empirical CDFs to check if their difference in distributions is statistically
significant. All the test results show that p-values approach to 0, turning out that in each panel of
Fig. 3, any two CDFs are different in statistical significance.
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(a) Taxi Trip Speed Distribution by ToDs.
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(b) Taxi Trip Speed Distribution by Distances.
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(d) Taxi Trip Cost Distribution by Distances.

Figure 3: Distributions of Speed and Cost of Taxi Trips by ToDs and Distances.

For each taxi trip i, the average speed is calculated as viod = diod/t
i
od. Fig. 3a shows the empirical

CDFs of taxi trip speed at different ToDs. During 3-6 AM, the taxi trip speed is the highest, where
the median and 90th percentile of speed are 18.16 and 32.01 mph, respectively (see the rightmost
curve in Fig.3a). During 15-18 PM, the taxi trip speed is the lowest, where the median and 90th
percentile of speed are 9.94 and 19.71 mph, respectively (see the leftmost curve in Fig.3a).

Taxicabs can be seen as “floating cars” in urban traffic flows. Thus, speed of taxi trips can
vary largely between different ToDs due to distinct urban congestion situations in traffic network.
For measuring the impact of urban congestion, the taxi-based congestion index (TCI) is defined as

TCI = Ṽ max
ToD /ṼToD, (2)

where Ṽ max
ToD and ṼToD are respectively the maximum median speed of all ToDs and the median

speed of a specific ToD. Here Ṽ max
ToD can be seen as the speed in free flow. During a specific

ToD, it is more congested if its ṼToD is lower, which leads to a higher TCI. For the DC area, the
maximum TCI in a day is then TCImax=1.83, as ṼToD is the lowest during 15-18 PM. Monitoring
and understanding traffic congestion conditions of a city is critical for better urban planning. In
the Urban Congestion Reports (UCR) by Federal Highway Administration (FHWA) [8], the Travel
Time Index (TTI) is defined as TT/TTO, where TT and TTO are respectively the average travel
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time and free-flow travel time. TCI provides an alternative way to measure congestion, without
requiring extensive traffic flow data from roadway sensors or track data from probing vehicles.

Fig. 3b shows the empirical CDFs of taxi trip speed for every mile within five miles in trip
distance. It is shown that short-distance trips are slower than long-distance trips. This is likely
due to the facts that taxi cabs often take arterial or highway for long-distance trips while have to
use congested urban streets for short-distance trips most time. The median speeds are respectively
8.53, 10.54, 11.91, 14.53, and 18.31 mph corresponding to the taxi trip distance from one mile to
five miles. Both Fig. 3a and 3b show that a majority of taxi trips have a rather low median speed.
In urban areas, traffic congestion is often serious due to the high density of intersections. The
inefficient urban mobility might be vastly optimized and improved in practice by adopting some
smart urban traffic control systems [27, 46, 48].

Fig. 3c shows the empirical CDFs of taxi trip fares at different ToDs. The average highest and
lowest taxi fares are respectively corresponding to the time period of 3-6 AM (the rightmost curve
in Fig. 3c, concerning the least congested ToD as shown in Fig.3a) and 15-18 PM (the leftmost
curve in Fig. 3c, concerning the most congested ToD as shown in Fig.3a), and their medians are
respectively $1.27 and $0.97 per minute. This result is consistent with the recent study showing
that the congestion often reduces the income of taxi drivers [55].

Fig. 3d shows the CDFs of taxi trip fares for every mile within five miles in trip distance. As
shown in the figure, the shorter the trip distance, the higher the fare rate (i.e. fare per mile) is. As
trip distance increases, taxi fare rate drops and will finally converge to a cost limit. Thus taxi is
often considered by road users as a convenient and fast service for medium-to-long distance trips
as compared to other transportation modes.

From a conventional viewpoint, taxi service in urban area seems to be in a dilemma — it is
difficult for road users to take a taxi during traffic peak time, whilst the increase of taxi services
leads to more traffic congestion [37]. However, from another more recent viewpoint of Mobility-as-
a-Service (MaaS) [17], taxi system (along with other for-hire vehicle and shared mobility systems)
in fact greatly helps reducing urban congestion as well as VMT. This is because in multimodal
transportation environments, taxi services can provide pooled rides [35] and connect with other
modes to make trips taken in a more sustainable way. As measures of effectiveness (MoE) on urban
mobility and trip costs, Fig. 3 is valuable for key stakeholders of taxi services such as road users,
taxi drivers and operators, and city’s urban planners and policymakers, as it can help them making
better decisions on corresponding activities, operations, and policies, such as whether and when to
choose taxi as travel mode, when and how to operate taxi services, how to plan and regulate taxi
services, and etc.

5. Trip Safety

Although taxi drivers are often considered as more experienced than normal drivers, a quite
large amount of traffic violations and road crashes are found regarding to taxi drivers [44]. Taxi
drivers were shown to have a higher probability of speeding at the onset of yellow phase and of
red-light running (RLR) at intersections [44]. In addition, taxi drivers were shown to more likely
be severely injured than normal drivers [4].

According to the crash data in Open Data DC, there were 2,209 crashes involving taxicabs,
among totally 28,730 vehicle crashes in DC during the studied period of [2015-09-01, 2016-08-31].
As shown in Fig. 4a, the spatial distribution is rather wide on the locations corresponding to taxi-
related traffic crashes. To better understand taxi-related traffic crash probability of each location
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(a) Taxi Crash Locations in DC. (b) Crash Hotspots & Heatmap of Taxi Pickups.
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Figure 4: DC Taxi-related Crashes and the Relevance with DC Taxi Demands.

in DC, we perform a statistical analysis on the crash data. For each taxi-related traffic crash, we
first decompose its location using 3-digit grid decomposition (see Def.2.1) to obtain its grid at the
scale of streets approximately. Next, we group all crashes according to their grids and count crash
number of each grid. Finally, for each crash number, we sum up all the corresponding grids to count
the total number of grids for the crash number, i.e. the frequency of the crash number. Fig. 4c
gives the frequencies of crash numbers in DC between [2015-09-01, 2016-08-31]. Notice that crash
probability can be calculated from frequencies of crash numbers through a simple normalization
over the total number of grids. As shown in Fig. 4c, the data can be fitted to a straight line in a
log-log model with two coefficients β0 and β1, i.e.,

log(Frequency) = β0 + β1 log(Number of Crashes), (3)

meaning that crash probability follows a common pattern of the scale-free law in the physical and
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social sciences [13, 49]. In one side, the high-accident locations (associated with large numbers of
crashes in Fig. 4c) are subject to a small portion of streets. This means that if we could focus
on the small group of high-accident streets and could put more safety precautions and endeavors
such as enforcements, educations and engineering efforts on them to reduce crashes, transportation
safety would be greatly improved. In another side, a large amount of streets are shown to have
a small number of crashes, implying that the goal of decreasing crash number to zero would be
challenging.

Recent years, more and more cities have adopted Vision Zero [18, 39], a project aiming to achieve
a highway system with no fatalities or serious injuries involving road traffic. It is affirmative to see
more cities hold the vision that “Life and health can never be exchanged for other benefits within
the society’ rather than the conventional comparison between costs and benefits on traffic safety,
and the realization of Vision Zero in cities could be benefited from some innovative solutions, e.g.,
the smart Internet of things (IoT) [45, 52] and big data analysis of traffic crashes [51].

To further explore the high-crash locations, we show the crash hot spots of taxi cabs in Fig.
4b, where heatmap of the taxi pick-up flows from Fig. 1c is included to observe if there is any
correlation between traffic crash and trip demand. The statistically significant crash hot spots
are extracted with the results of z-scores from the Gi* statistic by Ord and Getis [26] with 95%
and 99% confidences respectively. The heatmap is computed using kernel density estimation. Fig.
4b indicates that most of crash hot spots are located at the regions with a high trip demand. To
further quantitatively study the correlation between taxi crash probability and taxi pickup demand,
we combine the statistical analysis with 3-digit grid decomposition for Fig. 4c and Fig. 1c. For
each grid, we can get its number of taxi crashes from the analysis for Fig. 4c and its taxi pickup
demand from Fig. 1c. We estimate taxi pickup demand of each grid using the average pickup rates
of its (2 · n+ 1)2 nearest-neighbor grids with a cutoff range of [−n, n] grids along both latitude and
longitude. Here we use n = 1 in this paper. Fig. 4d shows the relationship between the numbers of
taxi crashes and the taxi pickup demands in 3-digit grids, i.e. at about the street scale. As shown
in the figure, the growth in traffic demand may increase the probability of crashes occurring, but
not always. Fig. 4d indicates that high traffic demand is a necessary but not a sufficient condition
causing a high probability of crashes. It would be valuable to study the features of the low-crash
zones with high traffic demand and apply the obtained knowledge for reducing crashes.

6. Multimodal Connectivity

Delivering excellent connectivities between different traffic modes is a key to maintain the effi-
ciency of a multimodal transportation system. Fig. 5 shows the walk-time and spatial distributions
from any taxi pickup location to its nearest Capital Bikeshare or nearest Metro stations, where
the walk time is retrieved using Google Maps API. The probability of the walk time from a taxi
pickup location to its nearest station is computed with the method as shown below:

1. Transform geolocations to two dimensional grids with k-digit grid decomposition (see Def.2.1),
where k = 2 (i.e., at about the neighborhood scale) is used to decrease the data retrieving
cost in using Google Maps API but retain sufficiently fine granularity.

2. For each grid in map, retrieve its minimum walk time to the station among the K nearest
stations (K = 20 by default) in the straight line distance from Google Maps API.

3. Let M(t) be the set of grid indices, where for each grid gm with m ∈ M(t), the minimal walk
time from the grid to a station is t (for which we use binned time in one-minute intervals).

10



Let Cp(gm) be the number of taxi pickups (i.e. actual demand) in each grid gm. Then the
probability mass functions of the walk-time distributions respectively for uniform demand
and for actual demand can be calculated as

Fud(t) =
|M(t)|∑
t |M(t)| , Fad(t) =

∑
m∈M(t) Cp(gm)

∑
t

∑
m∈M(t) Cp(gm)

. (4)

Figs. 5a and 5b give the comparisons of CDFs of the walk-time distributions between uniform
demand (red) and actual demand (blue) on connectivity from taxi pickup locations to Capital
Bikeshare and Metro stations respectively. Figs. 5c and 5d give the spatial distributions of Capital
Bikeshare and Metro stations respectively in the DC area, where the actual demand on connectivity
(i.e. the heatmap of taxi pickups) is also shown in both of the figures.
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(a) Walk Time to Bikeshare Stations.
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Figure 5: Walk-Time Distributions from Taxi Pickup Locations to Bikshare or Metro Stations and Spatial Distribu-
tions of Bikshare and Metro Stations & Taxi Pickup Heatmap.
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As shown in Figs. 5a and 5b, all the walk-time CDFs of actual demand (blue) is on the top
left of those of uniform demand (red). It proves that accessibility in connections from taxi to other
transportation modes has a strong positive impact on taxi demand. More accessibility to connect
other transportation modes a location has, more taxi demands it has. The data shows that 50%
and 90% taxi passengers in DC can access the nearest bikeshare station in 2.97 and 7.26 minutes
respectively (see Fig. 5a), and can access the nearest metro station in 9.83 and 29.13 minutes
respectively (see Fig. 5b). We find that the distributions of the walk time from any taxi drop-off
location to the nearest stations are similar to the results using taxi pickup locations. The analysis
results are independent from the choice of using taxi pickups or drop-offs or both.

In a multimodal environment, accessibility in connections between different modes has signif-
icant impacts on users to select which transportation modes to use. The impacting factors on
accessibility in connectivity include level of convenience, costs, speed, distance and etc. Trans-
portation policy makers might have to consider all the impacting factors if expecting people use
more sustainable transportation modes such as bike ride or public transits, rather than private
cars. Let us take an example on replacing vehicle by bike. As shown in Fig. 3a, taxi speed is rather
low during rush hours in DC, so are the other vehicles. In this case, many road users would change
their transportation mode to bike ride during rush hours given their trips are not long-distance.
In fact, many taxi trips are short-distance demands in DC (see Fig. 2), therefore it is feasible for
road users in DC to replace some of taxi trips with bike rides. Beyond improving sustainability of
DC, this transportation mode shift could greatly reduce traffic congestion.

In most cases, it is not easy for road users to replace private cars directly with public transits.
The comparison between Fig. 5a and Fig.5b shows that the walk time (reflecting the distance) for
road users to access the nearest Metro stations is likely much longer than to bikeshare stations.
Concerning connection with public transit, both taxi and bike trips are turned out to be very
helpful on providing convenient intermediate or last-mile solutions [41]. However, the fare of taxi
might be one barrier for some road users on choosing taxi as their connection mode to metro. As
shown in Fig. 3d, the fare of taxi for short-distance trip is much higher than that for long-distance.
In this case, if these road users dislike biking either, it would be hard for them to choose metro
as their transportation mode. Reduction in the fare of taxi might be realized through improving
efficiency of the taxi system [57], where either the balance between demand and supply could be
optimized leading to less empty trips [59], or the rate of ride sharing could be increased on each
individual taxi trip [36].

7. Transportation Resilience

An urban transportation system might suffer various levels of disruptions or extreme events due
to many reasons such as emergency maintenance and extreme weathers. Transportation resilience
is defined to evaluate its responsive ability to a disruption or extreme event, where the static
resilience often refers to a transportation system’s capability of maintaining its basic function
during a major perturbation, while the dynamic resilience refers to how quickly a transportation
system can recover its state of normal function after a major perturbation [7, 23].

On 03-16-2016 (Wednesday), the DC Metrorail system, which is the backbone of DC public
transportation systems, was entirely shutdown for emergency repairs. The impact of this major
disruption was investigated by a systematic research [29]. The research revealed that vehicle
volumes, bus ridership, and Capital Bikeshare ridership all increased in the regional core area, but
did not study taxi and other ride-sharing systems.
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Here we investigate the role of taxi system as one mode of multimodal transportation on
preserving resilience of a city-scale transportation network. Fig. 6 shows the impact of this major
disruption on taxi trips by comparing the results on 03-16-2016 and the results of a four-Wednesday
average (two Wednesdays before and two Wednesdays after the disruption). The volume of taxi
trips on 03-16-2016 increased 23.2% in comparison with that of the four-Wednesday average (see
Fig. 6a), while the median time of taxi trips increased 22.4% from 11.53 to 14.11 minutes (see
Fig. 6b). These elastic changes reflect that the taxi system played a significant function on help
preserving the transportation resilience as such a major disruption occurred.
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(a) Changes in Taxi Trip Volumes.
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(b) Changes in Trip Time Statistics.

Figure 6: Changes of Taxi Trips due to Metrorail Shutdown on 03-16-2016.

In January of 2016, the blizzard “Snowzilla” [43] caused significant snowfall and blizzard con-
ditions, and a snow emergency was declared in the DC area. The Washington Metropolitan Area
Transit Authority (WMATA) suspended all Metrorail and Metrobus service between 01-23-2016
and 01-24-2016. Capital Bikeshare closed its stations between 01-23-2016 and 01-26-2016. Fig. 7a
shows the taxi trip volumes in the blizzard week (from 01-21-2016 to 01-28-2016, in red color) and
a normal week (from 01-07-2016 to 01-14-2016, in blue color). For indicating temporal resilience,
Fig. 7b shows the hourly ratios rh between the two weeks as defined in Eq. 5,

rh =
Taxi Volume for Each Hour in the Blizzard Week

Taxi Volume for Each Hour in the Normal Week
. (5)

Figs. 8a–8h give the spatial distributions of taxi pickups for each day in the blizzard week, where
pickup locations are decomposed with k-digit grids using k = 3 (see Definition 2.1). In Figs. 8a–8h,
each circle represents the center of a pickup location decomposed with 3-digit grid, and its color
represents the range of daily taxi pickup rate in log10 corresponding to the pickup location.

As shown in Fig. 7a, the taxi ridership suddenly dropped down from the afternoon of Friday
(01-22-2016). On Saturday (01-23-2016), though only a few taxi trips were taken (see Fig. 7a), the
service of taxi transportation system covered a substantial region of DC (see Fig. 8c). On Sunday
(01-24-2016), there were a large amount (13.7% of the normal state) of taxi trips (see Fig. 7a), and
the taxi system recovered its function in the major urban areas of DC (see Fig. 8d)). During these
two weekend days (01-23-2016 and 01-24-2016), the taxi system worked as a single transportation
mode, because Metrorail, Metrobus, and Capital Bikeshare did not operate. The volume of taxi
trips returned to 47.5% of its normal state on Monday (01-25-2016), and it gradually reached to
the complete normal state on Thursday (01-28-2016), see Fig. 7a. During the recovery period, the
increase in the traffic demands using the taxi system was partly contributed by the major customer
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(b) Hourly Ratios of Taxi Pickup Volumes between the Blizzard Week and the Normal Week.

Figure 7: Temporal Taxi Pickup Distributions: Comparison between the Blizzard Week and a Normal Week in 2016.

(a) 01-21-2016: rg3=1.07 (b) 01-22-2016: rg3=0.94 (c) 01-23-2016: rg3=0.07 (d) 01-24-2016: rg3=0.44

(e) 01-25-2016: rg3=0.78 (f) 01-26-2016: rg3=0.90 (g) 01-27-2016: rg3=1.02 (h) 01-28-2016: rg3=1.07

Figure 8: Spatial Taxi Pickup Distributions and rg3 Values in the Week of January 2016 Blizzard Snowzilla.
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sources of two other modes in the multimodal transportation system, mainly the people commuting
by rail and by air [32]. Concerning the scenario, traditional measurement indices on resilience, such
as peak disruption and recovery time [7], can be acquired from Fig. 7b as the ratio drops below
1. The two indices however may not be sufficient to describe the full spatio-temporal aspects of
transportation resilience in a multimodal environment. Therefore, in Fig 8, we not only show the
spatial distributions of taxi pickups for each day in the blizzard week, but also compare the taxi
spatial accessibility for each day between the blizzard and the normal weeks through computing
rg3 as defined in Eq. 6 for indicating spatial resilience,

rg3 =
Numbers of 3-Digit Grids Accessed for Each day in the Blizzard Week

Numbers of 3-Digit Grids Accessed for Each day in the Normal Week
, (6)

which represents the ratio of the total numbers of 3-digit grids where taxi accessed between the
blizzard and the normal weeks. The rg3 values are respectively 0.07 and 0.44 on 01-23-2016 and
01-24-2016. Notice that we did not count any walking distance in the computation, and the ratios
would be higher if walking distances were considered inside. The value of rg3 at peak disruption,
0.07, represents the spatial accessibility of surface transportation modes in the city under the worst
condition in such an extreme event. For the taxi system, the recovery time is 3 days if using a
threshold rg3 ≥ 0.9, regarding the resilience in spatial accessibility.

8. Trip Patterns and Land Use

Taxi trips contain massive spatial and temporal information on human mobility [5, 38]. By
fusing multiple sources of participatory sensing data [49], we can better understand social dynamics
and the land use in different regions of a city, which not only provides an essential support to the
management and maintenance on the public infrastructure and resources of a city, but also enables
transportation planning in a timely fashion. Fig. 9 shows the comparisons of temporal patterns
between weekday and weekend for the top 21 highest 2-digit grids in the ranking of the volumes
of taxi pickups. As shown in Fig. 9, temporal patterns of human activity are divergent among
different grids.

A pattern of human activity for a region expresses an aggregation effect integrating all the
activities taken by all the individual persons at all the places in the region. We use the Foursquare
API to obtain a large sampling on population. Foursquare is a location-based social network
(LBSN). In Foursquare, each place is called a venue, where users can check in their activities. The
venues are organized into hierarchical categories based on their supported activities and functions.
There are total 10 categories at the root level, which are respectively 1) Arts & Entertainment,
2) College & University, 3) Event, 4) Food, 5) Nightlife Spot, 6) Outdoors & Recreation, 7)
Professional & Other Places, 8) Residence, 9) Shop & Service, and 10) Travel & Transport.

The numbers of check-ins are collected every half hour for all the venues within the whole
studied area of the Foursquare dataset. Using the data, for each venue v, we can calculate its
average check-in rate rc(v) as

rc(v) = (smax
c(v) − smin

c(v) )/(t
max
c(v) − tmin

c(v) ), (7)

where tmin
c(v) and tmax

c(v) are the check-in time at beginning and at last, smax
c(v) and smin

c(v) are the check-in

counts at beginning and at last. We discard the venues with tmax
c(v) = tmin

c(v) , as these venues have very

low check-in rates (since no any change in the check-in counts during the long collection period).
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Figure 9: Temporal Patterns of the Top 21 highest 2-Digit Grids Ranking in Taxi Pickup Volumes.
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Let qc(v) be the root category of each venue v, we can compute the weight of each root category
Q for each region R by summing up qc(v) over all the venues in the region R as

w(R,Q) =
∑

v∈R,qc(v)=Q

rc(v), (8)

and the normalized weight ŵ(R,Q) is

ŵ(R,Q) = w(R,Q)/
∑

∀Q

w(R,Q). (9)

Table 1 lists the normalized weights in percentage for all root categories of venues in different
regions, where Regions A, B, C, D, E, F are respectively corresponding to the grids depicted in
Figs. 9a, 9e, 9c, 9j, 9i, 9l. These regions are considered since they have rather high weights in some
root categories. Compared to traditional zoning and land use maps, the participatory sensing data
can provide detailed proportions of lane use categories in different regions.

Table 1: Normalized Weights (in %) for All Root Categories of Venues in Different Regions.

No. Venue Root Category A B C D E F

1 Arts & Entertainment 2.61 1.82 1.24 3.60 37.37 6.88

2 College & University 0.93 0.98 1.89 0.09 0.13 0.00

3 Event 0.44 0.00 0.01 0.00 0.00 0.00

4 Food 26.6 33.53 17.66 35.42 16.08 7.44

5 Nightlife Spot 14.01 14.24 0.63 18.97 0.91 0.66

6 Outdoors & Recreation 12.72 7.85 2.41 9.27 18.48 10.58

7 Professional & Other Places 21.26 19.30 13.72 5.85 13.71 69.98

8 Residence 1.17 2.04 2.40 4.04 0.20 0.00

9 Shop & Service 8.14 11.61 6.19 18.23 1.64 1.65

10 Travel & Transport 12.13 8.64 53.84 4.54 11.47 2.82

From Fig. 9, we can identify four basic types of regional taxi trip demand. Here we explain
each type of taxi demand, and find the corresponding information in Table 1 on land use. The
first type is Travel & Transportation hubs, including major train stations and airports [9]. Its
example is Regions C, which has 53.84% venues in the Category No. 10 as shown in Table 1. The
region contains the Union Station, a major transportation hub of DC. As shown in Fig. 9c, the
pickup volume in Region C is high during the daytime and early night time. The second type is
Professional Places, such as Region F, which have 69.98% venues in Category No. 7, as shown in
Table 1. This region contains the Capital Hill. The pickup flow patterns include high volumes
during the daytime in weekday, and very low volumes in weekend, as shown in Fig. 9i. A similar
region is shown in Fig. 9p. The third type is Recreation & Entertainment, such as Region E,
which have 37.37% and 18.48% in Categories No. 1 and No. 6, as shown in Table 1. The pickup
flow patterns include a main peak at afternoon, both in weekday and weekend, as shown in Fig.
9i. Similar patterns can be found in Figs. 9o and 9r. The fourth type is Nightlife Spot, which has
more venues in Categories No. 4, 5 and 9. An example is Region D, which is located near the U
Street Corridor. Its main feature in pickup flow pattern is a high volume peak during 0-4 AM of
weekend, as shown in Fig. 9j. Similar patterns can be identified in Figs. 9k and 9t.
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Trip demand for some regions might be a mix of multiple basis flows [28], for example, Regions
A and B. Region A has the highest total number of taxi pickups among all 2-digit grids, and it
has a mixed form of venues including Food, Professional Places but without a single dominant
Category. Region B is near Dupont Circle, which is a result of mixing more forms of venues in
Categories 4, 9 and 5, and the mixed effect of multiple venue categories is shown to have attracted
more people for night life in weekends, see Fig. 9e.

In summary, the results indicate that the significant relations between trip patterns and land
use types can be uncovered by fusing taxi trip data and participatory sensing data. The findings
are able to support a better comprehension on the multi-facet interactions between human mobility
dynamics and urban spatial structures.

9. Discussions

Here we discuss our work of analyzing taxi O-D trips from the viewpoint of taking advantages
of the uncovered patterns and characteristics in urban mobility and city dynamics for data-driven
decision supports (DDDS) [50]. Fig. 10 shows the DDDS from the relations between the taxi system
and key stakeholders such as road users, taxi drivers and operators, and the city (urban planners
and policymakers). The inputs from key stakeholders to the taxi system and urban environment
include trip information (such as O-D, purpose, mode and route choice), operating strategies (such
as pricing [11, 55], taxi dispatching [24], and customer searching [37]), and urban landscapes (e.g.,
land use and infrastructure) and transportation-related policies and regulations [16].

Figure 10: Data-Driven Decision Supports from Relations Between the Taxi System and Stakeholders.

For stakeholders, the patterns and characteristics extracted from data can provide key measures
of effectiveness (MoE) of the taxi system on an ongoing basis. In this paper, trip cost and mobility
are evaluated in Section 4 to measure the impacts of urban traffic congestion. Trip safety and the
relations with taxi travel demand are investigated in Section 5 based on spatial distributions. Notice
that although the metrics of mobility and safety represent aggregated experiences from both road
users and taxi drivers, they can be improved by city planners or policymakers through upgrading
urban landscapes or by taxi operators through adopting emerging technologies for safety such
as the innovations on connected and autonomous vehicles. Multimodal connectivity is assessed
in Section 6, where we analyze the current taxi trip demand in regard to other transportation
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modes including bikeshare and public transit. For road users, a better connectivity can provide
them more flexibility and choices in multimodal trip planning. For city planners, more options
of multimodal trips can help them make practical policies and regulations to match local needs
and conditions and to reduce vehicle miles traveled (VMT) and traffic congestion. The role of
taxi system on preserving the city-scale resilience is analyzed in Section 7, where we focus on the
serious disruptions that caused one or more other major transportation modes to temporarily stop
service. The results indicate that taxi system is an important traffic mode retaining resilience for
road users. The results are also useful for city policymakers and urban planners on supporting the
decision making and planning in emergency events requiring the city-scale resilience.

Beyond providing MoEs, the patterns and characteristics can be used by stakeholders as ad-
ditional decision supports. The impacts of urban congestion (as shown in Section 4, measured on
cost and mobility ) can serve as evidence-based supports to the city, which for example can be used
by urban planners to achieve intelligent transportation network management, and by policymakers
to design a more accurate pricing structure [31, 55] for improving the taxi system efficiency. The
relations between trip patterns and land use (explored in Section 8) can be used by taxi system
operators to optimize operating activities (such as dispatching and customer searching) and by the
city to enhance urban landscapes.

It should be mentioned that although the taxi trip data that we analyzed can only represents a
partial group of urban mobility, the findings can contribute to the decision supports for improving
overall multimodal urban transportation, in consideration of the similarities between taxi system
and other for-hire vehicle services and the complementary relationships between taxi service and
other transportation modes.

10. Conclusion

In this paper, we performed a systematic analysis to uncover urban mobility and city dynamics
in multimodal transportation environments by using the taxi O-D trip data and some additional
data sources in the District of Columbia (DC) area. We first studied basic characteristics of
taxi trips. Afterwards, we applied data visualization, data analysis, statistical analysis and data
fusion to systematically investigate five important aspects, of which three concern urban mobility
(respectively mobility and cost including effect of traffic congestion, trip safety, and multimodal
connectivity), and the other two are related to city dynamics (respectively transportation resilience,
and the relation between trip patterns and land use). For each aspect, we uncovered patterns and
characteristics from taxi trip data then explored the results to discuss qualitative and quantitative
impacts of the inputs from the stakeholders on available measures of effectiveness on urban mobility
and city dynamics.

On characteristics of taxi trips, we found that the statistical distributions of the major taxi
trip attributes (including trip distance, time, and fare) follow a parametric lognormal model, which
is consistent and complementary with the recent works of the taxi data analysis on a few other
different cities. The finding is useful not only for road users by assisting the mode choice in
multimodal trip planning, but also for simulation studies by providing inputs to enable evaluation
of potential impacts from some major changes in stochastic processes. On mobility and cost, our
statistical analysis showed that a majority of taxi trips have a rather low median speed; taxi fare
rate drops with the increase in trip distance and finally converges to a cost limit. In addition, the
effects of traffic congestion in the city was shown quantitatively measurable from the distributions
of trip speed and trip fare of taxi services by time or distance. On road safety, we discussed major
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safety concerns by analyzing the spatial distribution of taxi crashes and the relationship between
crash probability and trip demands. Crash probability was found to follow a common pattern of
the scale-free law in the physical and social sciences, where the high-accident locations are subject
to a small portion of streets, while a small number of crashes is corresponding to pervasive streets.
This means that transportation safety would be greatly improved if the the small group of high-
accident streets could receive more safety precautions and efforts, but decreasing crash number to
zero would be challenging. High traffic demand was found being a necessary but not a sufficient
condition causing a high probability of crashes. On multimodal connectivity, we analyzed the
accessibility in connection for taxi passengers to other transportation modes including bikeshare
and Metrorail systems. We also discussed the impacts of connection on the upcoming mode shift in
a multimodal transportation environment. On transportation resilience, we analyzed two specific
cases in DC, in which one is a disruption and another is an extreme event, to study the role of taxi
system on preserving resilience in a multimodal transportation environment. The results showed
that taxi service system has the capability of fast recovering its function in urban mobility from
traffic disruption or extreme event. In case of major disruptions, taxi system was shown to become
a crucial transportation mode at the advantages of holding a better essence in retaining resilience
compared to the other transportation modes. On the relation between trip patterns and land use,
we showed that land use categories can be extracted through analyzing and identifying fundamental
trip patterns. The findings can support a better comprehension of city dynamics, especially on the
interactions between human mobility dynamics and urban spatial structures.

Finally, we briefly discussed some critical roles and implications of the uncovered patterns and
characteristics on urban mobility and city dynamics from the relation between taxi systems and
key stakeholders, where key stakeholders include road users, system operators, and city planners
and policymakers. The study demonstrated that large-scale statistical analysis on location-based
human mobility data has a great value subject to revealing insights of transportation and urban
dynamics in a multimodal urban environment. The results in this paper can support road users
by providing evidence-based information of trip cost, mobility, safety, multimodal connectivity and
transportation resilience, can assist taxi drivers and operators to deliver transportation services in
a higher quality of mobility, safety and operational efficiency, and can also help city planners and
policy makers to transform multimodal urban transportation in a more effective and efficient way.

References

[1] Anas, A., R. Arnott, and K. Small (1998). Urban spatial structure. Journal of Economic Literature 36 (3),
1426–1464.

[2] Arribas-Bel, D. (2014). Accidental, open and everywhere: Emerging data sources for the understanding of cities.
Applied Geography 49, 45–53.

[3] Beirão, G. and J. S. Cabral (2007). Understanding attitudes towards public transport and private car: A
qualitative study. Transport Policy 14 (6), 478–489.

[4] Boufous, S. and A. Williamson (2009). Factors affecting the severity of work related traffic crashes in drivers
receiving a worker’s compensation claim. Accident Analysis & Prevention 41 (3), 467–473.

[5] Castro, P. S., D. Zhang, C. Chen, S. Li, and G. Pan (2013). From taxi GPS traces to social and community
dynamics: A survey. ACM Computing Surveys 46 (2), 17.

[6] Cramer, J. and A. B. Krueger (2016). Disruptive change in the taxi business: The case of Uber. The American
Economic Review 106 (5), 177–182.

[7] Donovan, B. and D. B. Work (2017). Empirically quantifying city-scale transportation system resilience to
extreme events. Transportation Research Part C 79, 333–346.

[8] Federal Highway Administration (FHWA) (2016). Urban Congestion Reports.
https://ops.fhwa.dot.gov/perf_measurement/ucr/ (Accessed: 2017-11-10).

20

https://ops.fhwa.dot.gov/perf_measurement/ucr/


[9] Ferreira, N., J. Poco, H. T. Vo, J. Freire, and C. T. Silva (2013). Visual exploration of big spatio-temporal urban
data: A study of New York City taxi trips. IEEE Transactions on Visualization and Computer Graphics 19 (12),
2149–2158.

[10] Foursquare (2017). Foursquare API. https://developer.foursquare.com (Accessed: 2017-11-10).
[11] Gan, J., B. An, H. Wang, X. Sun, and Z. Shi (2013). Optimal pricing for improving efficiency of taxi systems.

In International Joint Conference on Artificial Intelligence (IJCAI), pp. 2811–2818.
[12] Geroliminis, N. and C. F. Daganzo (2008). Existence of urban-scale macroscopic fundamental diagrams: Some

experimental findings. Transportation Research Part B 42 (9), 759–770.
[13] Gonzalez, M. C., C. A. Hidalgo, and A.-L. Barabasi (2008). Understanding individual human mobility patterns.

Nature 453 (7196), 779–782.
[14] Google (2017). Google Maps API. https://developers.google.com/maps (Accessed: 2017-11-10).
[15] Guo, D., X. Zhu, H. Jin, P. Gao, and C. Andris (2012). Discovering spatial patterns in origin-destination

mobility data. Transactions in GIS 16 (3), 411–429.
[16] Harding, S., M. Kandlikar, and S. Gulati (2016). Taxi apps, regulation, and the market for taxi journeys.

Transportation Research Part A 88, 15–25.
[17] Jittrapirom, P., V. Caiati, A.-M. Feneri, S. Ebrahimigharehbaghi, M. J. A. González, and J. Narayan (2017).
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