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PROBLEM INTERSECTION CONTROL COODINATION IN NETWORK

e Traffic congestion is a practical problem re- e [ook-ahead scheduling in a rolling horizon e Consider non-local impacts in the network
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o Aggregate non-uniform flow into jobs

e Use an optimistic coordination protocol

o . - Decentralized / Scalable: each agent only communicates
e Optimize in a scheduling search space with its direct neighbors, but can incorporate non-local
Intersection impacts from direct and indirect upstream neighbors
- Optimistic: each agent tries to follow its own schedule,
minor schedule changes in neighbors can be absorbed

e For urban road networks, better tratfic flow ol ’ ’ ' Input Flow 1
requires better traffic signal control, and real- ’ ’ ’ Input Flow 2
Algorithm 1 Obtain an optimistic non-local observation

tinte, Eldélp tve stmteg tes offer the blggeSt pay- . m = GetEntryRoadByPhase(i) {For each phase i}

off , — - , = . UpAgent = GetUpstreamAgent(m)
Sohedule §2(137 1375711 Sequence . Request Cop from UpAgent using (cdt, m, He.t)
: Shift(Cog, the travel time on m)

- Construct a schedule that optimizes movement of the - Append Cop into Cpp,

currently approaching traffic in the local observation
1]

- Real-time decisions: traffic light cycles through a se-
quence of phases I, each phase 7 has a variable duration
that can range between a minimum and a maximum

. Al ithm 2 Ret C for : ' dt.n, H..
orsters complesty 12 T (e + 1) s | | ZEEEm E et Cor o o

. : ; OF . D0OF ) = CF; cat, € ext
updates, where || is the number of phases/inflows, and 2: for k = |Cop| to 1 do

|C1F,i| is the number of jobs on inflow ¢ 3. |corr| = |cork| tp(sork,n)  {turning proportion}
- Performs 2-4 orders of magnitude faster than COP [2] 4: end for

- Local observation: inflows of vehicles in the prediction
horizon (), the current phase index and duration of
traffic light, and the current decision time
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Goal: Scalable network-wide optimization
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- Each intersection is locally controlled by an agent . 100m , | - | | Demand (vehicles/hour)
using a schedule-driven intersection control strategy
(SchIC) [3]. At each decision point, each agent con- Simulation Settings Control Strategies
truct hedule that optimi t of the ob-
z e?‘l;;ls ffaf?i cut}ei o ua hoﬁt;?;feerssgﬁigimzﬁ dousese tcl)lis - Scenario: grid network with tightly-coupled intersec- - BPU: Balanced phase utilization [1] (offset calculation)
schedule to de terminegthe best control ac,: fion to take tions (with 2.5 or 7.5-second travel time on one edge) - SchlC: Schedule-driven intersection control [3]
- Dynamic demands on the bottleneck intersection C3 - CoL0: SchIC + Optimistic non-local observation

- For strengthening its local view, each agent queries the
scheduled outflows from its upstream neighbors to ob- e CoL0 produced lower waiting times than both other strategies. Comparison to SchIC demon-

tain an optimistic observation, which is capable of in- § "} ot1.ateg the added benefit of optimistic non-local observation. Furthermore, CoL0 outperforms
corporating non-local impacts from indirect neighbors , .. . , L. . o
BPU without requiring explicit otfset calculation; coordination between neighbors is instead

® Summary: Multi-agent coordination = look- accomplished implicitly by looking ahead to upstream output flows.

ahead scheduling + coordination mechanism(s)
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, - Real-world challenges: uncertainty, robustness to failures

2 ¢ Advanced coordination mechanisms

7 : .»‘\
|7/ 1
¥

- Pricing mechanisms to dampen any disruptive changes

/ on schedules made by upstream agents (intersections)
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- Negotiation mechanisms to reach for an equilibrium in an
over-saturated traffic sub-network




