Exploiting Problem Structure in Combinatorial Landscapes: A Case Study on Pure Mathematics Application

Xiao-Feng Xie, Zun-Jing Wang {xie, wang}@wiomax.com WIOMAX LLC

SUMMARY

- Use AI techniques to find narrow admissible tuples, a case of pure mathematics applications
 - Formulate the original problem into a combinatorial optimization problem
 - Exploit the local search structure for reduction in search space & elimination in search barriers
 - Realize search strategies for tackling problem structure & escaping from local minima
- Shed light on exploiting the local problem structure for efficient search in combinatorial landscapes as an application of AI to a new problem domain

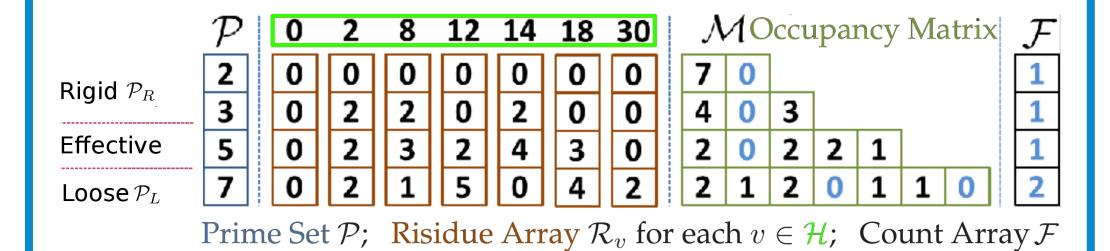
BASIC PROBLEM FORMULATION

In number theory, a k-tuple $\mathcal{H}_k = (h_1, \dots, h_k)$ is admissible if $\phi_p(\mathcal{H}_k) < p$ for every prime p, where $\phi_p(\mathcal{H})$ denotes the number of distinct residue classes modulo p occupied by the elements in \mathcal{H}_k . The objective is to minimize the diameter of \mathcal{H}_k , i.e., $d(\mathcal{H}_k) = h_k - h_1$, for a given k.

- Motivated by the two long-standing H-L conjectures
- Recently used in finding bounded intervals containing multiple primes

[Constraint Optimization Model] For a given k, and the required number set V and prime set P, the objective is to find a number set $\mathcal{H} \subseteq \mathcal{V}$ with the minimal $d(\mathcal{H})$ value, subject to the constraints $|\mathcal{H}| = k$ and \mathcal{H}_k is admissible.

[Auxiliary Data Definitions] $(\mathcal{H},\mathcal{P}) \to \{\mathcal{R}_v\} \to \mathcal{M} \to \mathcal{F}$, where $r_{v,i} = v \mod p_i$, $m_{i,j}$ is the count of numbers in \mathcal{H} occupying each residue class modulo p_i , f_i is the count of zero elements in the *i*th row of \mathcal{M} .



Property 2 (Admissibility) \mathcal{H} is admissible if $f_i > 0$, $\forall i$.

Property 5 (Offsetting) For any admissible $\tilde{\mathcal{H}}_k$, $\mathcal{H}_k^{[c]} =$ (h_1+c,\ldots,h_k+c) is admissible, $d(\mathcal{H}_k^{[c]})=d(\tilde{\mathcal{H}}_k)$.

Property 6 (Subsetting) Any subset of H is admissible.

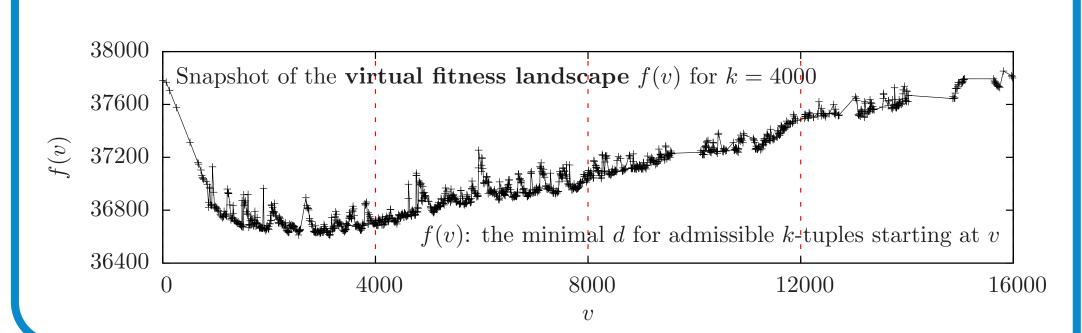
REDUCTION AND DECOMPOSITION

[**Problem Reduction**] Obtain effective V and P (Alg. 1)

- Use the rigid set \mathcal{P}_R to sieve the numbers in \mathcal{V}
- Use the remaining \mathcal{V} to eliminate the loose set \mathcal{P}_L

[Problem Decomposition] Solve a list of subproblems

- Each subproblem takes each $v \in \mathcal{V}$ as the starting point h_1 to obtain the minimal diameter as $f^*(v)$
- Return the best result on the fitness landscape $f^*(v)$



BASIC OPERATIONS

- Elemental 1-moves: adding/removing a number v
- ullet VioCheck: Precheck the violation count as adding v
- Possess the *connectivity* property for each $\mathcal{H} \in \mathcal{V}$
- Each operation only costs $O(|\mathcal{P}|)$ in using \mathcal{M} and \mathcal{F}
- The focus is on searching between admissible states

SEARCH ALGORITHM

RALS Algorithm:

- Update the virtual fitness landscape f(v) (as DB)
- Lines 4-5: Lateral search for a promising start v on f
- Lines 6-7: Extensive local search to obtain f^* near v

Algorithm 9 RLAS algorithm to obtain \mathcal{H}_k^* for a given k

- 1: Intialize V and P using Algorithm $1 // U = 1.5 \cdot \lceil k \log k + k \rceil$ 2: $DB=DBInit(N_R)$ // Initiate DB with N_R regions
- 3: **for** $t \in [1, T]$ **do**
- $\mathcal{H}_k = DBSelect(DB)$ // Select one incumbent solution from DB
- $\mathcal{H}_k = ShiftSearch(\mathcal{H}_k); DBSave(\mathcal{H}_k, DB)$
- $\mathcal{H}_k = LocalSearch(\mathcal{H}_k, 1, N_{I1}); DBSave(\mathcal{H}_k, DB)$
- $\mathcal{H}_k = LocalSearch(\mathcal{H}_k, 2, N_{I2}); DBSave(\mathcal{H}_k, DB)$
- 8: end for
- 9: **return** \mathcal{H}^* in DB

// Return the best solution stored in DB

Lateral Search: Adaptive search in the rugged landscape

- *DBSelect*: Find a promising region, based on a mixed form of tournament selection and random selection
- *ShiftSearch*: Follow the acceptance style in *annealing*

Local Search: Efficiently search in a large neighborhood

- Target scarce feasible moves through VioCheck info
- Make greedy search with one and more 1-moves (might be in a large neighborhood) at level 0 and 1
- Take plateau moves to find exits at level 2

Algorithm 8 *LocalSearch*: Remove & insert to improve \mathcal{H}_k

- Require: \mathcal{H}, N_S, N_I // Parameters: $N_S \geq 1, N_I \geq 1$
- 1: **for** $n \in [1, N_S]$ **do**
- $Side=RND(\{Left,Right\}); \tilde{\mathcal{H}}=SideRemove(\tilde{\mathcal{H}},Side)$
- 3: end for
- 4: **for** $n \in [1, N_I]$ **do**
- $\mathcal{H} = InsertMove(\mathcal{H}); \text{ if } |\mathcal{H}| \geq k \text{ break}$
- 6: **end for**
- 7: **return** $\mathcal{H}_k = Repair(\mathcal{H})$

Algorithm 7 *InsertMove*: Local moves in $[h_1, h_{|\tilde{\mathcal{H}}|}]$ of $\tilde{\mathcal{H}}$

- Require: \mathcal{H} // Parameter: $Level \in \{0, 1, 2\}$ 1: Initialize $\{Q_i = \varnothing | i \in [1, |\mathcal{P}|]\}$ // Use as Level > 0
- 2: for $v \in \mathcal{V}_{in} = [h_1, h_{|\tilde{\mathcal{H}}|}] \cap \mathcal{V} \tilde{\mathcal{H}}$ do
- $\Delta = VioCheck(v, \mathcal{H})$ // Algorithm 4 if $\Delta \equiv 0$ return $\mathcal{H} = \mathcal{H} \cup \{v\}$ // Level 0: Insert one number
- if $\Delta \equiv 1$ then $i = VioRow(v, \mathcal{H}); Q_i = Q_i \cup \{v\}$ 6: **end for**
- 7: for Level > 0 and $i \in [1, |\mathcal{P}|]$ do
- if $|Q_i| > m_{i,sb}$ return $\mathcal{H} = \mathcal{H} + Q_i W_{i,sb}$ // Level 1
- 10: for Level > 1 and $i \in [1, |\mathcal{P}|]$ (In Random Order) do
- if $|Q_i| \equiv m_{i,sb} > 0$ return $\mathcal{H} = \mathcal{H} + Q_i W_{i,sb}$
- 12: **end for**

9: **end for**

13: **return** \mathcal{H} // The original \mathcal{H} is unchanged

RESULTS

Results by Existing Methods: [Polymath, 2014a; 2014b]

- Most methods are constructive and sieve methods
- Empirically, the bound is $H(k) \le k \log k + k + o(1)$
- Online database [Sutherland, 2015] for $k \leq 5000$

k	1000	2000	3000	4000	5000
k primes past k	8424	18386	28972	39660	50840
Eratosthenes	8212	17766	28008	38596	49578
Schinzel	8326	18126	28092	38418	49056
Hensley-Richards	8258	17726	27806	38498	48634
Shifted Schinzel	8190	17716	27500	37782	48282
Best known	7802	16978	26606	36610	46806

Results by RALS Algorithm: Different Parameters

- T=0: The best results by the shifted greedy sieve
- $Level, N_{I1}, N_{I2}$: Local search with different levels, iterations, and contraction depths
- γ : The region selection with different randomness

k	1000	2000	3000	4000	5000
BaseVer	7802.2	16981.6	26609.6	36626.2	46813.5
T = 0	7900.0	17204.0	26864.0	36926.0	47170.0
Level = 0	7835.3	17113.7	26797.5	36818.8	47060.3
Level = 1	7810.5	17055.0	26707.1	36742.7	46978.6
$N_{I1} = 100$	7802.5	16981.8	26613.0	36631.0	46815.0
$N_{I1} = 1000$	7802.1	16981.1	26608.1	36624.3	46813.6
$N_{I2} = 10$	7802.0	16980.5	26608.2	36626.4	46810.9
$\gamma = 0.001$	7802.3	16982.7	26613.4	36628.1	46818.3
$\gamma = 0.1$	7802.0	16979.0	26606.1	36623.2	46810.3
$\gamma = 1$	7803.2	16982.2	26607.7	36631.5	46814.2

Results by RALS Algorithm: Detail result statistics of "BaseVer" with $\gamma = 0.1, N_{I2} = 10$, with high SuccRate as T = 1000, and reasonable good as T = 100.

(a) T = 100

k	1000	2000	3000	4000	5000		
Average SuccRate(%) Time (s)	7802.8 79 14.7	16981.9 46 40.7	26611.6 49 83.3	36633.4 0 147.6	46817.0 7 267.8		
(b) $T = 1000$							
k	1000	2000	3000	4000	5000		
Average	7802.0	16978.9	26606.2	36620.6	46809.4		

Results by RALS Algorithm: New upper bounds for 48 instances, with 8 of them have $\delta d \ge 10$, as $k \in [2500, 5000]$.

757.5

138.5 371.9

1415.1 2518.3

k	\mathcal{H}_k^*	δd	k	\mathcal{H}_k^*	δd	k	\mathcal{H}_k^*	δd
2547	22248	4	3407	30612	12	4167	38324	2
2548	22256	4	3408	30628	2	4168	38330	4
2736	24018	2	3409	30634	6	4169	38334	8
2737	24024	6	3410	30640	6	4170	38344	8
3026	26868	6	3411	30646	8	4171	38358	6
3357	30098	8	3412	30652	18	4614	42852	8
3358	30108	8	3413	30666	18	4615	42860	10
3374	30286	2	3414	30684	10	4634	43076	4
3375	30294	6	3415	30700	8	4809	44824	2
3376	30300	12	3424	30782	4	4810	44830	4
3377	30316	2	3473	31298	2	4860	45366	2
3378	30324	2	3474	31302	6	4861	45376	2
3379	30334	2	3475	31314	2	4928	46050	2
3404	30580	6	3487	31438	2	4929	46060	2
3405	30586	14	4107	37680	4	4956	46336	2
3406	30600	10	4108	37688	2	4957	46354	2
			·					

FUTURE WORK

SuccRate(%)

Time (s)

- Deeper analysis to identify more local search properties
- Toward general optimization with advanced AI strategies