

Coping with Real-World Challenges in Real-Time Urban Traffic Control

Challenges

- Uncertainty and disturbances can significantly degrade the accuracy of real-time flow predictions
- Optimization of vehicle flows requires active attention to bus and pedestrian flows

Our Work

- Investigate real-word challenges in the context of SURTRAC, a live, urban adaptive signal system testbed
- Propose strategies for strengthening SURTRAC to better deal with real-world uncertainties and multi-modal traffic demands
- Evaluate the effectiveness and impacts of these strategies using both simulations and analysis based on field data

SURTRAC (Scalable URban TRAffic Control) System

Schedule-Driven Intersection Control

- Treat each intersection as a single machine scheduling problem
- Use aggregate representation of traffic flows (as sequences of queues and platoons) to identify input jobs
- Use schedule to decide whether to extend or switch phase

Neighbor Coordination Mechanisms

- Communicate schedules to downstream neighbors to give visibility of future input jobs
- Layer mechanisms for coping with mis-coordinated situations (e.g., spillback) to account for fact that schedules might change

Xiao-Feng Xie, S. Smith, G. Barlow, Ting-Wei Chen

The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania

The East Liberty Adaptive Signal Testbed

Network Characteristics

- Grid-like character in contrast to arterial settings
- Tightly coupled intersections impose a challenge for coordination in decentralized control
- A range of uncertainties and disruptions

System Performance and Robustness

- Pilot tests: 26% lower travel time, 41% lower wait time
- Inherent robustness for handling significant changes in traffic flow patterns over time
 - > e.g., flow changes caused by the closing of the Highland Avenue bridge between Mar 4 - Oct 23, 2013

Percentage increase in vehicle counts at **D** after the bridge closing

	EDF	EDA	EDC	FDC	FDE	ADE	ADF	CDE	CDF	Total
Mon	23.6%	23.0%	29.8%	1.4%	14.7%	24.2%	-4.6%	45.5%	-5.9%	20.0%
Tue	14.4%	24.4%	32.0%	-5.7%	17.6%	23.2%	-6.9%	49.5%	-4.6%	18.9%
Wed	18.9%	27.1%	30.1%	-2.5%	14.8%	18.3%	-4.1%	46.8%	-8.2%	18.6%
Thu	15.7%	22.4%	27.3%	-0.6%	17.9%	21.4%	-5.3%	50.1%	-4.5%	19.1%
Fri	22.3%	25.1%	32.8%	-4.7%	13.9%	19.1%	-10.3%	42.9%	-11.8%	17.8%
Sat	20.7%	23.9%	25.1%	-2.1%	14.6%	26.2%	-6.0%	49.6%	-4.8%	20.4%
Sun	20.2%	22.6%	32.9%	-4.4%	10.3%	27.8%	-2.1%	52.8%	-5.5%	20.7%
avg	19.3%	24.1%	29.9%	-2.7%	14.9%	22.6%	-5.7%	48.0%	-6.6%	19.3%

Strengthening Strategies

1. Queue Management

- Problem: Handle various forms of sensing uncertainty (e.g., detection errors, hidden flows from/to mid-block side streets)
- Approach: (1) Define states using detection information; (2) Adjust arrival counts dynamically based on arrival/departure ratio
- **Result**: Restore the performance to near optimal

3. Minor Flow Management

- **Problem**: How to service minor flows more intelligently
- Approach (Hybrid control): major flows by the local scheduler, minor flows by an actuated mode with history-based prediction
- **Result**: Balance system adaptivity and robustness; keep efficiency for major flows; and ensure stability from minor flows

2. Disruption Management

- **Problem**: The flow on a road might be temporarily blocked during the green period (e.g., caused by bus stops, or spillback)
- **Approach**: Treat disruption as a job delay in scheduling problem
- **Result**: (1) Optimize the efficiency for both vehicle and bus flows; (2) No need to define a number of heuristic decision rules

4. Pedestrian Flow Management

- **Problem**: Pedestrians are often ignored in vehicle-centric systems
- **Approach**: Vehicle-pedestrian mixed coordination protocol
- **Result**: Reduce pedestrian wait time and ensure coordination

Acknowledgements

The Heinz Endowments Howard Heinz Endowment • Vira I. Heinz Endowment

King Mellon Soundation