
How Autonomy Oriented Computing (AOC) Tackles a
Computationally Hard Optimization Problem

Xiao-Feng Xie
Department of Computer Science

Hong Kong Baptist University
Kowloon Tong, Hong Kong

xfxie@comp.hkbu.edu.hk

 Jiming Liu
Department of Computer Science

Hong Kong Baptist University
Kowloon Tong, Hong Kong

jiming@comp.hkbu.edu.hk

ABSTRACT
The hard computational problems, such as the traveling salesman
problem (TSP), are relevant to many tasks of practical interest,
which normally can be well formalized but are difficult to solve.
This paper presents an extended multiagent optimization system,
called MAOSE, for supporting cooperative problem solving on a
virtual landscape and achieving high-quality solution(s) by the
self-organization of autonomous entities. The realization of an
optimization algorithm then can be described in three parts: a)
encode the representation of the problem, which provides the
virtual landscape and possible auxiliary knowledge; b) construct
the memory elements at the initialization stage; and c) design the
generate-and-test behavior guided by the law of socially-biased
individual learning, through tailoring to the domain structure. The
implementation is demonstrated on the TSP in details. The
extensive experimental results on real-world instances in TSPLIB
show its efficiency as comparing to other algorithms.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
heuristic methods; I.2.11 [Distributed Artificial Intelligence]:
multiagent systems

General Terms
Algorithms, Experimentation, Theory

Keywords
Multiagent system, Autonomy Oriented Computing (AOC),
Traveling Salesman Problem (TSP), global optimization, search,
cooperative problem solving, emergent and collective behavior.

1. INTRODUCTION
The hard computational problems are ubiquitous in scientific and
engineering fields [26], which often are conceptually simple and
can be cast as a search through a space of alternatives [24][37].

The landscape paradigm originated in theoretical biology is used
for search in general [25]. Suppose the representation space (SR)
contains all the potential solutions, where each is called a state s ,
and the solution space (SO) is a set of states with reasonable
quality. Normally, the SO/SR is quite small since that the size of SR
expands exponentially with the size of problems [24]. For the
optimization task to find Os S∈ with high probability, typical
challenges include: a) little a priori knowledge is available; and b)
total computational resource and time are bounded.

The traveling salesman problem (TSP) [40] is a classic NP-hard
problem. Although the TSP is easily formulated, it exhibits
various aspects of hard computational problems and has often
served as a touchstone for new problem solving methods [29][54].
The researches [10][17][53] have indicated the phase transitions
under certain order parameter(s), however, it seems most real-
world instances are still located at the hard computational region.

Autonomy oriented computing (AOC)[31] addresses the modeling
of autonomy in the entities of a complex system and the self-
organization of them in achieving a specific goal. The complex
behaviors can emerge from the interactions of autonomous entities
following simple rules. Recently, the AOC based methods have
been applied to solve various problems [30][47][51].

In this paper, the compact multiagent optimization system
(MAOSC) [51], which is originally proposed for handling with the
numerical optimization problem (NOP) only, is extended for
supporting the cooperative search on a virtual landscape by a
society of compact agents with limited memory capacity and
simple behavioral rules under ecological rationality [18]. Each
agent only has moderate problem solving capability by comparing
with two extremes: a) the reflex agent, such as ant [12], which has
no declarative memory and can only produce reflex behaviors in
the environment; b) the cognitive architecture, such as ACT-R [1],
which is rather sophisticated under unbounded rationality.
Besides, the cooperation [13] is necessary because no single agent
has sufficient knowledge on the virtual landscape. Here the agents
collaborate with the others by indirect interactions, which are
implemented through the communication medium role of the
environment [31], instead of by sophisticated negotiation [27].

The paper is organized as follows. In Section 2, the extended
multiagent optimization system (MAOSE) in two levels is
introduced in details. In Section 3, the implementation is
demonstrated on the TSP, which addresses exploiting the problem
features in search. In Section 4, the extensive experimental results
by MAOSE, using real-world instances from the TSPLIB, are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS’06, May 8–12, 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005...$5.00.

International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Hakodate, Japan, 2006: 646-653

[Cooperative Group Optimization] http://www.wiomax.com/optimization

compared with those of some existing algorithms [45][54]. In the
last section, this paper is concluded.

2. THE MULTIAGENT SYSTEM
The extended multiagent optimization system is built in two levels:
a) the symbolic level for supporting basic problem solving; and b)
the multiagent framework for specifying the organization structure
and operation mechanism based on the symbolic level.

2.1 The symbolic level
The general problem solving capability arises from the
consequence of the interaction of declarative and procedural
knowledge [1]. As in the information process system [37], the
declarative knowledge is represented in symbol structures, called
T_INFO elements, and the procedural knowledge is represented in
elementary information processes, called behavioral rules.

Each T_INFO element is described by a tuple <I_RC, I_TYPE,
I_CON>, where I_RC is the retrieve cue, I_TYPE indicates a
certain search space, and I_CON is its state.

The memory [19][37] is used for storing T_INFO elements. Each
element can be retrieved from a memory according to its I_RC.

The memory must be updated if it is to be useful [19]. But
updating is not encoding a new T_INFO element. Instead, only
the I_CON is subjected to change. Then a T_INFO element can
be referred as a trajectory that comprise of many instances. For
specified time t, a T_INFO instance is expressed as ()

I_RCI_TYPE t .

Each behavioral rule is described by a tuple <I_NAME, I_KEY>,
where I_KEY indicates a virtual interface for handling specific
T_INFO elements, and I_NAME indicates the real operations,
which can be controlled by specifying setting parameters within a

rule-parameter space. A behavioral rule is expressed as I_NAME
I_KEYR .

2.2 The multiagent framework
As an AOC-based model [31], the framework consists of a society
of N agents where they cooperate in a sharing environment (E) to
realize a common intention of finding high-quality solution for an
optimization task. Since the optimization task can be well-defined,
the sophisticated negotiation [27] among agents is not necessarily.
Instead, an agent is communicated with the others by indirect
interactions, which are implicit implemented through the
communication medium role of the environment (E).

Environment (E)

Agent
Central Executive

MA
(private)

MS
(social sharing)

Generate-and-test behavior
(socially biased individual learning)

FRRCO

Figure 1. An agent and the environment (E) it roams

Without loss of generality, the agents are homogenous in the
sense that they have the same organized structure. Figure 1 shows
one of the agents and the environment it roams. All other agents
are interacted with the environment in same way.

2.2.1 Environment
The environment serves as the domain in which agents roam [31].

Firstly, it contains an internal representation (FR) [36][41] of the
optimization task, which encapsulates accessible rudimental
knowledge, includes a virtual landscape [25] and some auxiliary
information associated with problem structure.

For the landscape, a quality evaluation rule (RM) is used for
measuring which one has better quality between any two states
(s) in the representation space (SR). The quality evaluation
implies the intention to attain the state that is better than another.

For normal problems, there is a cost function f(s) for each state

s ∈ SR. Then the evaluation is realized by a O
MR (as , bs) rule:

for ∀ as , bs ∈SR, if f(as) ≤ f(bs), then the as is better than the

bs , and O
MR returns TRUE, else it returns FLASE.

Secondly, the environment holds a socially-shared memory (MS),
called collective memory [38], which serves as the blackboard for
all agents by creating a shared past. The information flow from the
agents to the MS is supported by the coordinating behavior (RCO)
as in Fig. 1. In this sense, the environment also serves as an
accumulation pool for the emergent collective behavior instead of
a pure information provider as in cognitive architectures [1].

Thirdly, the environment keeps a central clock that helps
synchronizing the behaviors of the total system, if necessary [31].

In fact, the environment can be seen as a pseudo autonomous
entity for supporting the indirect cooperation of agents.

2.2.2 Agent
Each agent is a socially situated autonomous entity. Autonomy
[31] is an attribute of a self-governed, self-directed entity with
respect to its own status, free from the explicit control of another
entity. The essence is that each entity is able to make decisions for
itself, subject to the limitations of the available information.

The central executive (CE), the most important component of
working memory model [3][43] in term of its general impact on
cognition, is responsible for manipulating the local behavior and
behavioral rules of an agent, which govern how it should act or
react to the available information on the representation of problem
while determine the next status to which the entity will transit.

The agent has two belief sources. Firstly, it possesses a private
memory, called MA, which has limited capacity and can only be
modified by agent itself. The MA is a fundamental mental
component for supporting individual learning. Secondly, it can
access to the MS, which is socially available from the environment.

The law of behavior is socially biased individual learning (SBIL)
as adopted by many species in real world [16], which is a mix of
reinforced practice of own experience and socially available
information. The SBIL is suggested to be a heuristic in ecological
rationality [8][18], which a) gains most of the advantages of both
individual and social learning; and b) facilitates the emergent and

collective properties by allowing learned knowledge to be
accumulated from one generation to the next.

Due to lack of enough knowledge on the landscape to be searched,
the essential behavioral rule is generate-and-test rule (RGT). The
essential components of an RGT rule include a generating part (RG),
a solution-extracting part (RS) and a testing part (RT) [51]. The RS
part has no influence on the problem-solving process. It just
exports potential solution(s) during a run. Without loss of
generality, it can be supposed that only the RG part can create new
information that contains new potential solution(s), and the RT
part only produces simple reflex behavior, which may determine
nontrivial properties for some T_INFO elements in memory.

2.2.3 Working process
The framework runs in two phases. The first phase is memory
initialization phase, which initializes the T_INFO elements in MS
and in the MA of all agents according to the FR. The second phase
is generate-and-test phase. For a run, the number of cycles is T.
The behavior of system in the tth ([1,]t T∈) cycle only relies on
the status of system in the (t-1)th cycle. By running as a Markov
chain process, the system can be analyzed in each cycle.

Each cycle contains two clock steps: the C_PRE and the C_RUN.

At the C_PRE step, the coordinating behavior (RCO) at the
environmental level, which summarize the information submitted
by all the agents into the MS, is executed, i.e.

 () () (1)
(){ | [1,] }, CORt t t

A i S SM i N M M +∈ → (1)

For simplicity, here only the observational information is taken
into account, i.e. the T_INFO elements in all agents with same
I_RC are collected into a T_INFO element in MS. It is significant
since observational learning [5] can lead to cumulative evolution
of knowledge that no single agent could invent on its own.

At the C_RUN step, if an agent is activated, where its generate-
and-test rule is executed for generating new information by
estimating the distribution of promising space according to
available information in MA and MS and updating its MA, i.e.,

()
 () ()

 (1)

{ }
, GT

t
Rt t

A S t
A

s
M M

M +

→


(2)

Naturally, there are two run modes: a) full-run mode, where all
agents are activated; b) partial-run mode, where only NACT agents
(NACT [1,]N∈), which are selected at random, are activated.
Under same agent activated times, the system in partial-run mode
often converges fast since it allows fast information diffusion.

3. IMPLEMENTATION FOR THE TSP
For solving the TSP, the implementation is realized in three steps:
a) define the representation of the TSP (FR); b) initialize the
memory; and c) design suitable generate-and-test behavior.
According to no free lunch theorem [50], the domain knowledge
of the problem must be embedded at the implementation stage.

3.1 Representation of the TSP (FR)
The representation (FR) provides a basic interface for accessing
the essential domain information of the TSP, which includes a

TSP landscape and a candidate set for accelerating the local
search (LS), the basis of many good heuristic methods.

3.1.1 The TSP landscape
The TSP landscape is quite straightforward. It is a weighted
complete graph with V nodes (or called cities) and a cost matrix
D=(dij), where dij represents the length of an edge that connects
between cities i an j (i, j∈ [1, V]). Here we only concern with
the symmetric TSP, which have dij = dji for every pair of nodes.
The TSP then is to find a minimal-cost Hamiltonian tour that
passes through each node once. Each state s is a complete tour,
which can be represented as a permutation (i1, i2, …, iV) of the
integer values from 1 through V, where the cost function is

1 2 2 3 1
() ...

Vi i i i i if s d d d= + + + (3)

The distance of two states is defined as the number of edges in
which they differ [15][29][34].

In this paper, the original TSP landscape is used in order to allow
a fair evaluation of the performance of algorithms. However, it
should be mentioned that the transformation of the cost matrix
always be an approach for improving the solving performance.

One kind of methods does not change the relative order of the
states. As in Lagrangean relaxation [23][40], the length of every
tour is increased by 2 iπ⋅ ∑ as we associate with each node i a

penalty value iπ and use the transformed cost matrix D’=('
ijd),

where '
ijd = dij+ iπ + jπ . Of course, the order for the same

segments of a tour may be changed under different cost matrix.

The other kind of methods indeed changes the global landscape.
As in search space smoothing [21], the original landscape is
transformed into a series of gradually smoother landscapes, which
the smoothest one is solved at first and the solutions are used for
guiding the following landscapes until the original one.

3.1.2 Candidate set (EC) for local search
Local search (LS), also known as neighborhood search, has been
shown very effective for hard computational problems, including
the TSP. A basic LS algorithm, under a predefined candidate set
of neighborhood description, starts from an arbitrary complete
tour and repeatedly improves the current tour till it is trapped into
a local minimum. 2-Opt, 3-Opt and Lin-Kernighan (LK)
algorithm [29] are representative LS methods.

The complete graph for a symmetric TSP has (V2-V)/2 edges.
However, it is intuitively that most of the possible edges will not
occur in good tours because they are simply too long [40]. It is
therefore reasonable to restrict major attention to promising edges,
or called the candidate set, for accelerating local search (LS)
methods. The examples of candidate sets include the k (k≥1)
nearest neighbor subgraph, and the Delaunay graph, etc [40]. Of
course, it is often expected the candidate set to be smaller so as
not to result in a substantial increase in running time.
Helsgaun [23] estimates the chances of a given edge being a
member of a good tour by using minimum 1-trees [40]. A 1-tree is
a spanning tree with an additional edge combined two nodes with
degree 1. The minimum 1-tree is often used for estimating the
lower bound on the optimum since it is a relaxation of the TSP.
The estimation, or called Held-Karp bound [22], can be improved

substantially on the 1-tree with Lagrangean relaxation [40] by
applying subgradient optimization [22] for determining a certain
transformation of the cost matrix with the suitable set of penalties,
which each iπ is associated with each node i.

In α-nearness measure [23], each edge has a corresponding α-
value, which is the minimum length when a 1-tree is required to
contain the specified edge based on a transformed cost matrix.
Intuitively, the more accurately Held-Karp bound achieved by the
transformed cost matrix, the better estimation of α-values for the
edges. Then the candidate edges of each node are sorted in
ascending order of their α-values. Usually the minimum 1-tree
shares many edges with an optimal tour. It is intuitive that the
smaller α is for an edge, the more promising is this edge.

3.1.3 The features of the TSP landscape
The landscape is often studied in various ways. The first way is to
understand the landscape in terms of simple parameters [44], in
particular, to depict the phase transitions according to certain
order parameters [10][17][24][53]. For the TSP, most researches
are focused on the matrix D. Chessman et al. [10] investigated the
standard deviation of the D as an order parameter by using a
backtrack algorithm. Zhang [53] went deep into the precision of
the elements in the D by using a branch-and-bound algorithm.
The phase transitions in many hard computational problems have
revealed interesting regularities across different problems and
algorithms [24]. However, most real-world TSP instances are still
classified as hard at the existing phase diagrams.
The second way is to understand the landscape based on the hints
accumulated from the solving experience of existing algorithms.
Most modern LS variants [2][23][32][45] are essentially under
the umbrella of iterated LS (ILS) [32], or called chained LS (CLS)
[2], where the basic idea is to modify the current tour by applying
a kick-move on a previous found tour instead of independently
generated one. The intuition behind using chained starting tours is
that the strong positive correlation between solution cost and the
distance from the closest optimal tour, i.e., better local minima
tend to have smaller distance to the closest global optimum by
sharing many common partial structures [7][32][54]. The
observations have led to the “big valley” hypothesis [7], which
argues that the high-quality tours tend to concentrate on a very
small subspace around the optimal tour(s) [46].

Moreover, the inherent features of a set of high-quality tours have
been exploited in several ways. The first is reduction [29], which
locks the edges in the intersection of the edge sets (EI) of the tours
for speeding up the subsequent search. However, this method is
brittle [54], especially as a locked edge is not part of good tour.
The second is tour merging [11], which is to look for a high-
quality tour in a restrict graph (GR) consisting of the union of the
edge sets (EU) of the tours through a “branch-width” algorithm. In
fact, the number of edges in a GR can be quite few due to the large
number of shared edges among high-quality solutions. However,
optimizing over a GR can be hard as the original TSP instance.
Besides, although a GR may contain most of edges of an optimal
tour, it may not ensure containing at least one optimal tour, then
the tour merging may be failed to achieve optimum. The third is
backbone guided search [54], which makes using of global
information embedded in the pseudo-backbone frequencies for
changing the landscape. However, the local search may be trapped
into a local minimum unaffected by the changed landscape.

In this paper, the TSP landscape is exploited in the following
ways: a) the LS method is applied at the initialization (or early)
stage in order to reach the “big valley” as soon as possible [7]; b)
The new tour(s) are generated based on the kick-move on a
previous found tour as in the iterative LS [32]; c) an edge set (EU),
which is represented in a set of high-quality tours, are used as the
guiding information for the kick-move. The basic idea is that, for
the edges to be introduced, most of them come from the EU and a
few of promising edges are safely introduced by greedy search.
Moreover, to use a EU with repeated edges instead of a restrict
graph may utilize the pseudo-backbone frequencies implicitly;
and d) the diversity among tours is maintained carefully: firstly,
each starting tour is conserved in the private memory of each
agent; secondly, the partial instead of the full information in EU,
normally be a single tour, are used for guiding the kick-moves;
and thirdly, the diffusion distance for each starting tour is
restricted by an additional testing criterion on multiple trails.

3.2 Memory initialization
For simplicity, We use one T_INFO element in MA, i.e. a tour
called ()t

Ps . Hence the element in MS is
()$ t
Ps ={ ()

()
t

P is | i∈ [1, N] }.

Following a random initialization, each tour is improved by a LS
method, indicated as LSMI. The default choice for LSMI is a 3-Opt
with kNNI=20 neighborhood nodes in the candidate set.

3.3 The generate-and-test behavior
For solving the TSP, the generate-and-test behavior can be seen as
a kick-move on as , the starting tour to be improved, as in ILS [32].

To improve the chances for escaping from the local optimal tours,
the double-bridge (DB) [29][32], a non-sequential kick-move, is
normally used [2]. Helsgaun [23] has extended it into a 2-stage
kick-move, i.e., any infeasible 2- or 3-Opt move (producing an
intermediate solution consisting sub-tours) followed by any 2- or
3-Opt move, which produces a valid tour (by merging the sub-
tours). The infeasible intermediate solution is significant so as to
alter the global shape of a tour [2]. However, the blind mutation
should be avoided since it may be ineffective and inefficient.

The kick-move guided by a high-quality edge set (EU) has been
exploited extensively. Many of them [15][28][34][42] can be
classified as the tour-guided 2-stage kick-move (TG2KM): guided
by a tour bs in EU, the tour as is first modified into an infeasible
intermediate solution, normally consist disjoint segments or sub-
tours, which are then repaired by ingenious greedy mechanisms
while considering available information, such as the EC.

Many edge-based recombination operators, such as Voronoi
Quantized Crossover (VQX) [42], Natural Crossover (NX) [28],
Distance Preserving Crossover (DPX) [15], Edge Assembly
Crossover (EAX) [34][35], etc., can be taken as the examples.

Guiding by a tour instead of mutating blindly brings an implicit
advantage by utilizing the distance between as and bs . Normally,
the larger distance, the large perturbation on as is then allowed. It
brings an adaptive control of the balance between exploration and
exploitation along with the execution cycles.

Using a single tour instead of the whole information available is
simply because the former has inherent mechanism for preventing
premature convergence by locally diffusion of information in a

self-organized agent network while the latter needs sophisticated
mechanism although it provides more complete information.

Normally, new promising edges can only be safely introduced
when repairing the intermediate solution in greedy way. Hence the
unexpected edges that are introduced into the intermediate
solution, which are not existed in the bs and the set EC, should be
as less as possible. The following RGT rule, called EA

GTR , is
extended from the EAX [34], because it meets the requirement.

3.3.1 The generating behavior
The generating part (RG) is applied for generating new tour(s).

The preliminary operation is to build the mappings between the
external and internal information sources, i.e., from the ()t

Ps and

the ()$ t
Ps to the starting tour as and the guiding edge set EU. Here

as = ()t
Ps so as to preserve information naturally by using the

private memory; and EU= ()$ t
Ps so as to make use of the cumulative

pool. Moreover, the bs is a tour selected from the ()$ t
Ps at random

so as to utilize the pseudo-backbone frequencies implicitly.

By defining the GAB as a graph constructed by merging as and bs ,
the edges on GAB are then divided into AB-Cycles [35], where an
AB-cycle is defined as an even-length sub-cycle on GAB generated
by tracing different edges of as and bs alternately. As an AB-
Cycle is identified, then the edges making up the AB-Cycle are
removed from GAB and the AB-Cycle is stored into the AB-Lib if
it contains not only common edges of as and bs . The procedure
is repeated till no AB-Cycle could be extracted.

Each AB-cycle in AB-Lib can be used as the guiding information
for applying a kick-move on as in two steps [35][49].

The first step is to generate an intermediate solution, i.e., by
removing edges of as in the AB-cycle from as and adding edges
of bs in the AB-cycle to as . The result is a set of disjoint sub-
tours. It is obviously that all the changed edges of as are selected
from bs . Besides, the edges in as will be unchanged in the
intermediate solution if the edges that connected to a node in bs
belong to the edges that connected to the same node in as .

The second step is to modify the intermediate solution into a valid
tour by merging its sub-tours. Of course, it is a choice to apply the
2-Opt for merging sub-tours [9]. For reducing the computational
cost, a LS version, which can be seen as the first round of 2-Opt,
is used [34]: two sub-tours are greedy merged, by deleting one
edge from each sub-tour and adding two edges, where one of them
is a node selected at random in the candidate set EC, to connect
the nodes in both sub-tours with degree 1.

Of course, to find a good tour by simple one trail is not always
easy. Fortunately, there already are many AB-cycles in the AB-
Lib, which allows us to perform a multi-trail mechanism (MTM),
or called iterative child generation (ICG) [35][49], i.e. to generate
NMTM candidate tours, where each is based on an AB-Cycle
selected in AB-Lib at random. The idea was also exploited by the
Fitness-Distance-Based Diversification (FDD) [45] and the brood
selection mechanism [48]. The default value for NMTM is set as 30.

3.3.2 The testing behavior
The testing part (RT) is used for maintaining the MA, which is
similar as updating the starting solution in iterated LS, based on
the competition among the generated candidate tours.

The smaller difference between two information sources for the
RG part, the higher probability for falling into one of the local
minima associated with the guiding information [7][15]. Hence, it
is critically to maintain the diversity of information intentionally
since the high-quality solutions are already rather close.

For the competition of generated tours, it may easily get trapped
in specific regions of the TSP landscape if we only consider the
essential high-quality criterion [49]. The FDD mechanism [45]
hence utilizes an additional criterion, i.e., high quality as well as
rather distant from the starting tour.

If as is located at a local valley, then a tour better than as is
located at another valley of the TSP landscape. Here if only such
tours are allowing for competition, then it is no long necessarily to
keep large distance from the current solution intentionally.

It is expected that the private information in MA has strong
influence on the generated states, so as to keep a local diffusion
effect. Hence large adjustments are possible, but are much less
probable than small adjustments [4]. For a generated tour cs with

better quality than as , the cost function is transformed as follows:

'() (() ()) /((,)) DC
c a a cf s f s f s DIS s s= − (4)

where (,)a cDIS s s is a function to reflect the increasing of

distance between as and cs , and CD is called diffusion coefficient.
As in [34], the (,)a cDIS s s function is defined as half of the
number of edges in the corresponding AB-cycle to reduce
computational cost for calculating the exact distance.

If CD=0, '()f s represents the high-quality criterion, as in EAX-
1AB [34][35] or in brood selection mechanism [48]. If CD=1,

'()f s represents the criterion as in EAX-Dis [35]. If CD is very

large, the cs will be selected from the tours with smallest DIS
value. In fact, the CD determines the diffusion velocity of
information. The default setting is CD=1.5.

The selected cs is then used for replacing the ()t
Ps in MA. Hence

Px is a steady-state solution satisfying the above testing criterion.

4. EXPERIMENTAL RESULTS
The experiments are carried out on a set of real-world instances
with 1000≤V<3000 nodes in TSPLIB [39].

The results are compared with the iterative LS (ILS-FDD) [45]
and the iterated backbone guided LK algorithm (IBGLK) [54].

The ILS-FDD generates a new starting tour for ILS with Fitness-
Distance-Based Diversification (FDD) [45]. Their 3-Opt uses
some standard speed-up techniques under a candidate list of 40
nearest neighbors. The ILS version has achieved best performance
while comparing to three other algorithms, i.e., the genetic
algorithm (GA) using DPX-crossover (GA-DPX) [15], the repair-
based GA [48], and the MAX-MIN ant system (MMAS) [46].

c

c

c

The IBGLK [54] combines pseudo-backbone utilization with the
iterated LK algorithms by considering two issues: the first issue is
to construct unbiased samples of local minima for constructing
pseudo-backbone; and the second issue is to alternate between
BGLK and regular LK once each of them fails. For LK algorithm,
length-20 nearest nodes, don’t look bits [6], and the two-level tree
[14] tour representation, are used. The IBGLK version has
outperformed than three versions of LK algorithms [54], i.e. the
ILK-1-run, the ILK-5-run, and the ILK-10-run.

Table 1 gives the setting parameters for the standard case of
MAOSE, called #Std, where EC indicate the candidate set. Table 2
gives five other cases by changing one parameter value based on
the template of #Std. As same as in [45], 25 trails are run on
pr1002, pc1173, d1291, and 10 trails are run on other instances.

Table 1. The parameter setting for the case #Std of MAOSE
Parameter N NACT EC LSMI CD kNNI NMTM
Value 300 300 α-measure 3-Opt 1.5 20 30

Table 2. The parameter changes for other cases (based on #Std)

Case #NA100 #N400 #D1.0 #NN #2Opt
Changes NACT =100 N=400 CD=1.0 EC =nearest LSMI=2-Opt

Table 3 shows the results for average percentage deviation (∆avg)
from the optimum by ILS-FDD [45], IBGLK [54], and the
MAOSE cases. Besides, the average CPU-time (sec) for the ILS-
FDD and the IBGLK, and the average cycles (T) for the MAOSE
cases, are listed. We also list the run-time (sec) for the case #Std
and #400. The result for si1032 is just for reference and is not
used in the following discusses since it is not tested by ILS-FDD.
At the last row, the average values for all instances are calculated.

For the MAOSE cases, the calculation time mainly contains two
parts: the first is N times of LS executions at the initialization
stage; the second is ACTN T⋅ times of RGT executions by agents.
The less RGT executions is normally preferable, although there are
great deviations for the costs between different RGT executions.

Both the ILS-FDD and the IBGLK are coded in “C”. The ILS is
run on 450MHz P3 processor, and the IBGLK runtime is
normalized for a 500MHz Alpha. The MAOSE is coded in JAVA,
and is run on 2.8GHz and 3GHz P4 processors in a public cluster.
In fact, to compare the computational cost is not so easy since we
can only count run-time instead of CPU-time by JAVA. However,
the average run-time of the case #Std is 16.2% of that of the
IBGLK. Hence the case #Std can be at least comparable with the
IBGLK even by only considering the speed difference of CPUs.

The case #Std can achieve the optimum of thirteen instances in all
trails, which is better than both the ILS-FDD and the IBGLK.
Besides, here we use worse than/equal to/better than (W/E/B)
analysis. For #Std vs. the ILS-FDD, the W/E/B is 2/6/12, which
means that for the results of #Std, 2 instances was worse than, 6
instances were equal to, and 12 instances were better than that of
ILS-FDD. For #Std vs. the IBGLK, the W/E/B is 3/6/11.

The effects of parameters are also concerned. From the number of
solved instances, the #Std is slightly better than #D1.0, #NN, and
#2Opt. However, as the parameter CD is increased from 1.0 to 1.5,
the average T is increased by 14.1% due to the reduced diffusion
velocity. Hence for the parameter CD, the balance between the

quality and the cost must be minded. As the α-measure instead of
the nearest measure for the candidate set is used, the average T
is reduced by 19.3%, which due to the better estimation of
promising edges. Although 3-Opt itself is normally slower than
the 2-Opt, the average T can be reduced by 42.4%. Hence for the
LSMI, the 3-Opt is normally preferable than 2-Opt as the T is large.

Then the partial-run mode is checked by two cases: #NA100 and
#N400. For the #NA100 and the #Std, the time to be costed at the
initialization stage is same. Although the average ∆avg is slight
worse, the RGT execution times of #NA100 is 50.8% of that of
#Std. For #N400, it can achieve quite good performance in
reasonable run-time (sec), where the fails only occurs in five
instances, which are mainly due to the enriched socially-shared
information and preserved diversity among the larger society.

5. CONCLUSIONS
This paper has described an extended multiagent optimization
system (MAOSE) based on autonomy oriented computing, which
consists of a society of agents under ecological rationality where
they cooperate in a sharing environment to search on a virtual
landscape, for solving hard computational problems. Although
each agent only possesses limited memory and simple behavioral
rules, the collective properties can emerged from their cooperation.

From the viewpoint of computation, each agent is a stochastic
algorithm. Although the agents have same organized structure,
they become heterogonous since their memories are initialized
with different contents. If the agents do not utilize the information
in MS, then the system becomes a portfolio of algorithms [20][26].
The studies [20][26][33] have indicated the portfolios may have
unequivocal advantage than any of its individual member
algorithms running alone for dealing with hard computation
problems. In MAOSE, the agents are cooperated through the
information located in MS. Then the multiagent system becomes a
cooperative algorithm portfolio. The cooperation between agents
will introduce statistical correlations between their performance,
which is capable of reducing both the expected time and the
solving risk when manifested in negative correlations [26].

Under the MAOSE, the realization of a problem solver then can be
divided into three parts: a) encode the representation of the
problem into the landscape and the possible auxiliary knowledge;
b) construct the memory elements at the initialization stage; and c)
design the generate-and-test behavior guided by the law of
socially-biased individual learning. The implementation has been
demonstrated on the TSP, where all three parts are realized by
exploiting the problem features. The extensive experimental
results on real-world instances in TSPLIB show its efficiency as
comparing to the ILS-FDD and the IBGLK.

One possible extension of current work is to apply the agents for
solving other well-studied hard computational problems, which
are key components for many practical tasks, by utilizing inherent
features. Another possible extension is to study rational strategies
for agents to deploy multiple RGT rules under certain knowledge.

The agents may also be adapted to the cooperative distribute
problem solving (CDPS) [13][52] by requesting the guiding
information from other agents. Of course, the negotiation
mechanisms then may be required, especially as the agents use
various virtual landscapes for involved task.

6. REFERENCES
[1] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., and Qin, Y. An integrated theory of the mind.
Psychological Review, 111: 1036-1060, 2004.

[2] Applegate, D., Cook, W., and Rohe, A. Chained Lin-
Kernighan for large traveling salesman problems. INFORMS
Journal on Computing, 15: 82-92, 2003.

[3] Baddeley, A. Exploring the central executive. The Quarterly
Journal of Experimental Psychology A, 49: 5-28, 1996.

[4] Bak, P. How Nature Works: The Science of Self-Organized
Criticality. Berlin: Springer, 1996.

[5] Bandura, A. Social Foundations of Thought and Action: a
Social Cognitive Theory. NJ: Prentice-Hall, 1986.

[6] Bentley, J. L. Fast algorithms for geometric traveling
salesman problems. ORSA J. Computing, 4: 387-411, 1992.

[7] Boese, K. D., Kahng, A. B., and Muddu, S. A new adaptive
multi-start technique for combinatorial global optimizations.
Operation Research Letters, 16: 101-113, 1994.

[8] Boyd, R. and Richerson, P. J. The Origin and Evolution of
Cultures. New York: Oxford University Press, 2005.

[9] Chan, C. H., Lee S. A., Kao C. Y., et al. Improving EAX with
restricted 2-opt. Genetic and Evolutionary Computation
Conference, Washington DC, USA, 1471-1476, 2005.

[10] Cheeseman, P., Kanefsky, B., and Taylor, W. M. Where the
really hard problems are. International Joint Conference on
Artificial Intelligence, San Mateo, CA, 331-337, 1991.

[11] Cook, W. and Seymour, P. Tour merging via branch-
decomposition. INFORMS J. Computing, 15: 233-248, 2003.

[12] Dorigo, M., Maniezzo, V., and Colorni, A. The ant system:
Optimization by a colony of cooperating agents. IEEE Trans.
Systems, Man, and Cybernetics - Part B, 26: 1-13, 1996.

[13] Durfee, E. H., Lesser, V. R., and Corkill, D. D. Trends in
cooperative distributed problem solving. IEEE Transactions
on Knowledge and Data Engineering, 1: 63-83, 1989.

[14] Fredman, M. L., Johnson, D. S., McGeoch, L. A., and
Ostheimer, G. Data structures for traveling salesmen. Journal
of Algorithms, 18: 432-479, 1995.

[15] Freisleben, B. and Merz, P. New genetic local search
operators for the traveling salesman problem. International
Conference on Parallel Problem Solving from Nature, Berlin,
Germany, 890 - 899, 1996.

[16] Galef, B. G. and Laland, K. N. Social learning in animals:
Empirical studies and theoretical models. BioScience, 55:
489-499, 2005.

[17] Gent, I. P. and Walsh, T. The TSP phase transition. Artificial
Intelligence, 88: 349 - 358, 1996.

[18] Gigerenzer, G. Adaptive Thinking: Rationality in the Real
World. New York: Oxford University Press, 2000.

[19] Glenberg, A. M. What memory is for. Behavioral and Brain
Sciences, 20: 1-55, 1997.

[20] Gomes, C. P. and Selman, B. Algorithm portfolios. Artificial
Intelligence, 126: 43-62, 2001.

[21] Gu, J. and Huang, X. F. Efficient local search with search
space smoothing: A case study of the traveling salesman
problem (TSP). IEEE Transactions on Systems, Man, and
Cybernetics, 24: 728-735, 1994.

[22] Held, M. and Karp, R. M. The traveling salesman problem
and minimum spanning trees. Operations Research, 18:
1138-1162, 1970.

[23] Helsgaun, K. An effective implementation of the Lin-
Kernighan traveling salesman heuristic. European Journal of
Operational Research, 126: 106-130, 2000.

[24] Hogg, T., Huberman, B. A., and Williams, C. P. Phase
transitions and the search problem. Artificial Intelligence, 81:
1-15, 1996.

[25] Hordijk, W. A measure of landscapes. Evolutionary
Computation, 4: 335-360, 1996.

[26] Huberman, B. A., Lukose, R. M., and Hogg, T. An economics
approach to hard computational problems. Science, 275: 51-
54, 1997.

[27] Jennings, N. R., Sycara, K., and Wooldridge, M. A roadmap
of agent research and development. Autonomous Agents and
Multi-Agent Systems, 1: 7-38, 1998.

[28] Jung, S. and Moon, B. R. Toward minimal restriction of
genetic encoding and crossovers for the two-dimensional
Euclidean TSP. IEEE Transactions on Evolutionary
Computation, 6: 557-565, 2002.

[29] Lin, S. and Kernighan, B. W. An effective heuristic algorithm
for the traveling-salesman problem. Operations Research, 21:
498-516, 1973.

[30] Liu, J., Han, J., and Tang, Y. Y. Multi-agent oriented
constraint satisfaction. Artificial Intelligence, 136: 101-144,
2002.

[31] Liu, J., Jin, X. L., and Tsui, K. C. Autonomy Oriented
Computing (AOC): From Problem Solving to Complex
Systems Modeling: Kluwer Academic Publishers, 2005.

[32] Martin, O. C., Otto, S. W., and Felten, E. W. Large-step
Markov chains for the TSP incorporating local search
heuristics. Operations Research Letters, 11: 219-224, 1992.

[33] Maurer, S. M., Hogg, T., and Huberman, B. A. Portfolios of
quantum algorithms. Physical Review Letters, 87: 257901,
2001.

[34] Nagata, Y. The EAX algorithm considering diversity loss.
International Conference on Parallel Problem Solving from
Nature, Birmingham, UK, 332-341, 2004.

[35] Nagata, Y. and Kobayashi, S. Edge assembly crossover: a
high-power genetic algorithm for the traveling salesman
problem. International Conference on Genetic Algorithms,
East Lansing, MI, USA, 450-457, 1997.

[36] Newell, A. The knowledge level. AI Magazine, 2: 1-20, 1981.
[37] Newell, A. and Simon, H. A. Human Problem Solving.

Englewood Cliffs, NJ: Prentice-Hall, 1972.
[38] Olick, J. K. and Robbins, J. Social memory studies: From

"collective memory" to the historical sociology of mnemonic
practices. Annual Review of Sociology, 24: 105-140, 1998.

[39] Reinelt, G. TSPLIB - a traveling salesman problem library.
ORSA Journal on Computing, 3: 376-384, 1991.

[40] Reinelt, G. The Traveling Salesman: Computational
Solutions for TSP Applications. Berlin: Springer, 1994.

[41] Romney, A. K., Boyd, J. P., Moore, C. C., et al. Culture as
shared cognitive representations. Proc. Natl. Acad. Sci. USA,
93: 4699-4705, 1996.

[42] Seo, D. I. and Moon, B. R. Voronoi quantized crossover for
traveling salesman problem. Genetic and Evolutionary
Computation Conference, New York, 544-552, 2002.

[43] Smith, E. E. and Jonides, J. Storage and executive processes
in the frontal lobes. Science, 283: 1657-1661, 1999.

[44] Stadler, P. F. and Schnabl, W. The landscape of the traveling
salesman problem. Physics Letter A, 161: 337-344, 1992.

[45] Stützle, T., Grün, A., Linke, S., and Rüttger, M. A
comparison of nature inspired heuristics on the traveling
salesman problem. International Conference on Parallel
Problem Solving from Nature, Paris, France, 661-670, 2000.

[46] Stützle, T. and Hoos, H. H. MAX-MIN ant system. Future
Generation Computer Systems, 16: 889-914, 2000.

[47] Tsui, K. C. and Liu, J. Multiagent diffusion and distributed
optimization. International Joint Conference on Autonomous
Agents and Multiagent Systems, Melbourne, Australia, 169-
176, 2003.

[48] Walters, T. Repair and brood selection in the traveling
salesman problem. Int. Conf. on Parallel Problem Solving
from Nature, Amsterdam, the Netherlands, 813-822, 1998.

[49] Watson, J., Ross, C., and Eisele, V., et al. The traveling
salesrep problem, edge assembly crossover, and 2-opt.
International Conference on Parallel Problem Solving from
Nature, Amsterdam, the Netherlands, 823-832, 1998.

[50] Wolpert, D. H. and Macready, W. G. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation, 1: 67-82, 1997.

[51] Xie, X. F. and Liu, J. A compact multiagent system based on
autonomy oriented computing. IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, Compiègne,
France, 38-44, 2005.

[52] Yakoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K.
Distributed constraint satisfaction for formalizing distributed
problem solving. International Conference on Distributed
Computing Systems, Yokohama, Japan, 614-621, 1992.

[53] Zhang, W. Phase transitions of the asymmetric traveling
salesman. International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, 1202-1207, 2003.

[54] Zhang, W. and Looks, M. A novel local search algorithm for
the traveling salesman problem that exploits backbones.
International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, 343-348, 2005.

Table 3. The average results on TSPLIB instances (1000≤V<3000) by ILS-FDD [45], IBGLK [54] and MAOSE cases

F ILS-FDD (sec) IBGLK (sec) #NA100 (T) #N400 (T /sec) #Std (T /sec) #D1.0 (T) #NN (T) #2Opt (T)
dsj1000 0.0091(604.2) 0.01 (2066) 1E-04 (119.5) 0 (89.4/477) 0 (78.8/203.9) 3E-4 (58.9) 0 (100.6) 0 (103.8)

pr1002 0 (93.5) 0.00 (345) 0 (76.9) 0 (59.52/338.6) 0 (56.68/126.6) 0 (44.92) 0 (78.4) 0 (106.08)

u1060 0.009 (671.8) 0.02 (873) 0 (106.9) 0 (67.3/411.1) 0 (63.4/351.7) 0 (51.3) 0 (86.3) 0 (109.6)

si1032 - 0.00 (772) 0 (2.1) 0 (1.7/51.7) 0 (1.5/21.7) 0 (2.5) 1E-4 (9.2) 8E-4 (9.8)

vm1084 0.011 (340.8) 0.02 (403) 0 (67.0) 0 (55.8/388.9) 0 (52.5/327.9) 0 (42.9) 0 (69.9) 0 (69.9)

pcb1173 0.0011 (493.8) 0.00 (213) 0.004 (86.9) 7E-4 (68.04/466.4) 6E-4 (61.88/168.9) 0.003 (55.4) 4E-4 (71.7) 0 (105.7)

d1291 0 (320.5) 0.08 (1086) 0 (39.2) 0 (30.04/345.1) 0 (28.48/137.7) 0 (22.36) 5E-4 (39.2) 0.003 (47.2)

rl1304 0 (23.6) 0.00 (504) 0.014 (55.8) 0 (39.8/339.1) 0 (39.9/162.7) 0.007 (33.6) 0.002 (49.1) 0 (50.8)

rl1323 0 (148.3) 0.00 (582) 0 (55.3) 0 (40.7/353.2) 0 (35.2/279.4) 0 (30.4) 0.005 (49.3) 0 (55.5)

nrw1379 0.051 (867.3) 0.06 (440) 0.006 (147.5) 0.003 (102.8/417.2) 0.004 (88.4/385.1) 0.003 (72.8) 0.005 (116.8) 0.006 (176.4)

fl1400 0 (218.2) 0.00 (19317) 0.002 (147.7) 0 (111.1/460.5) 0 (102.3/448.0) 0 (94.9) 0 (115.8) 0 (116.8)

u1432 0.039 (763.4) 0.00 (617) 0 (97.4) 0 (67.5/334.5) 0 (59.7/570.3) 0 (53.5) 0.003 (75.5) 0.008 (132.4)

fl1577 0 (648.5) 0.00 (10430) 0.01 (102.1) 0.017 (72.3/690.6) 0.027 (47.5/239.9) 0.034 (42.8) 0.053 (84.7) 0.009 (98.8)

d1655 0 (803.1) 0.00 (1869) 8E-04 (94.8) 0 (67.3/777.3) 0 (60.7/325.1) 0 (46.8) 6E-4 (94) 0.002 (129)

vm1748 0.031 (1267.4) 0.01 (829) 0 (128.3) 0 (96.1/1133.1) 0 (86.7/612.5) 0 (69.3) 0 (108) 0 (124.8)

u1817 0.056 (1316.3) 0.16 (680) 0.001 (136.4) 0 (91.4/1125.2) 0.003 (74.3/439.7) 0.006 (62.9) 7E-4 (101.3) 0.008 (126.3)

rl1889 0.0064(1101.4) 0.22 (1110) 0 (95.7) 0 (72.8/567) 0 (65.8/525.1) 4E-4 (53.3) 0 (88.9) 0 (91.2)

d2103 0.001 (1747.7) 0.00 (8669) 0.036 (100.6) 0.003 (63.9/495.5) 0.019 (44.7/365.6) 0.004 (41.5) 0.076 (50.6) 0.005 (107.5)

u2152 0.061 (2401.9) 0.19 (808) 0.002 (114.8) 0 (79.4/714.7) 0.002 (71.9/662.7) 5E-4 (57.6) 0 (84.9) 8E-4 (149)

u2319 0.11 (1233.8) 0.04 (2091) 0.119 (143.5) 0.041 (163.1/1434.6) 0.038 (132.1/1251.8) 0.025 (177.2) 0.067 (158.5) 0.049 (256.2)

pr2392 0.004 (2079.2) 0.14 (715) 0 (175.5) 0 (129/1159.6) 0 (120.5/1123.0) 0 (89.9) 0 (152.7) 0 (225.1)

Average 0.019 (857.2) 0.047 (2682.3) 0.0098 (104.6) 0.0032 (78.4/621.5) 0.0047(68.6/435.4) 0.0041(60.1) 0.010 (85.0) 0.0045 (119.1)

