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ABSTRACT 
The hard computational problems, such as the traveling salesman 
problem (TSP), are relevant to many tasks of practical interest, 
which normally can be well formalized but are difficult to solve. 
This paper presents an extended multiagent optimization system, 
called MAOSE, for supporting cooperative problem solving on a 
virtual landscape and achieving high-quality solution(s) by the 
self-organization of autonomous entities. The realization of an 
optimization algorithm then can be described in three parts: a) 
encode the representation of the problem, which provides the 
virtual landscape and possible auxiliary knowledge; b) construct 
the memory elements at the initialization stage; and c) design the 
generate-and-test behavior guided by the law of socially-biased 
individual learning, through tailoring to the domain structure. The 
implementation is demonstrated on the TSP in details. The 
extensive experimental results on real-world instances in TSPLIB 
show its efficiency as comparing to other algorithms. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search]: 
heuristic methods; I.2.11 [Distributed Artificial Intelligence]: 
multiagent systems 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
Multiagent system, Autonomy Oriented Computing (AOC), 
Traveling Salesman Problem (TSP), global optimization, search, 
cooperative problem solving, emergent and collective behavior. 

1. INTRODUCTION 
The hard computational problems are ubiquitous in scientific and 
engineering fields [26], which often are conceptually simple and 
can be cast as a search through a space of alternatives [24][37].  

The landscape paradigm originated in theoretical biology is used 
for search in general [25]. Suppose the representation space (SR) 
contains all the potential solutions, where each is called a state s , 
and the solution space (SO) is a set of states with reasonable 
quality. Normally, the SO/SR is quite small since that the size of SR 
expands exponentially with the size of problems [24]. For the 
optimization task to find Os S∈  with high probability, typical 
challenges include: a) little a priori knowledge is available; and b) 
total computational resource and time are bounded. 

The traveling salesman problem (TSP) [40] is a classic NP-hard 
problem. Although the TSP is easily formulated, it exhibits 
various aspects of hard computational problems and has often 
served as a touchstone for new problem solving methods [29][54]. 
The researches [10][17][53] have indicated the phase transitions 
under certain order parameter(s), however, it seems most real-
world instances are still located at the hard computational region. 

Autonomy oriented computing (AOC)[31] addresses the modeling 
of autonomy in the entities of a complex system and the self-
organization of them in achieving a specific goal. The complex 
behaviors can emerge from the interactions of autonomous entities 
following simple rules. Recently, the AOC based methods have 
been applied to solve various problems [30][47][51]. 

In this paper, the compact multiagent optimization system 
(MAOSC) [51], which is originally proposed for handling with the 
numerical optimization problem (NOP) only, is extended for 
supporting the cooperative search on a virtual landscape by a 
society of compact agents with limited memory capacity and 
simple behavioral rules under ecological rationality [18]. Each 
agent only has moderate problem solving capability by comparing 
with two extremes: a) the reflex agent, such as ant [12], which has 
no declarative memory and can only produce reflex behaviors in 
the environment; b) the cognitive architecture, such as ACT-R [1], 
which is rather sophisticated under unbounded rationality. 
Besides, the cooperation [13] is necessary because no single agent 
has sufficient knowledge on the virtual landscape. Here the agents 
collaborate with the others by indirect interactions, which are 
implemented through the communication medium role of the 
environment [31], instead of by sophisticated negotiation [27]. 

The paper is organized as follows. In Section 2, the extended 
multiagent optimization system (MAOSE) in two levels is 
introduced in details. In Section 3, the implementation is 
demonstrated on the TSP, which addresses exploiting the problem 
features in search. In Section 4, the extensive experimental results 
by MAOSE, using real-world instances from the TSPLIB, are 
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compared with those of some existing algorithms [45][54]. In the 
last section, this paper is concluded. 

2. THE MULTIAGENT SYSTEM 
The extended multiagent optimization system is built in two levels: 
a) the symbolic level for supporting basic problem solving; and b) 
the multiagent framework for specifying the organization structure 
and operation mechanism based on the symbolic level. 

2.1 The symbolic level 
The general problem solving capability arises from the 
consequence of the interaction of declarative and procedural 
knowledge [1]. As in the information process system [37], the 
declarative knowledge is represented in symbol structures, called 
T_INFO elements, and the procedural knowledge is represented in 
elementary information processes, called behavioral rules. 

Each T_INFO element is described by a tuple <I_RC, I_TYPE, 
I_CON>, where I_RC is the retrieve cue, I_TYPE indicates a 
certain search space, and I_CON is its state. 

The memory [19][37] is used for storing T_INFO elements. Each 
element can be retrieved from a memory according to its I_RC. 

The memory must be updated if it is to be useful [19]. But 
updating is not encoding a new T_INFO element. Instead, only 
the I_CON is subjected to change. Then a T_INFO element can 
be referred as a trajectory that comprise of many instances. For 
specified time t, a T_INFO instance is expressed as ( )

I_RCI_TYPE t . 

Each behavioral rule is described by a tuple <I_NAME, I_KEY>, 
where I_KEY indicates a virtual interface for handling specific 
T_INFO elements, and I_NAME indicates the real operations, 
which can be controlled by specifying setting parameters within a 

rule-parameter space. A behavioral rule is expressed as I_NAME
I_KEYR . 

2.2 The multiagent framework 
As an AOC-based model [31], the framework consists of a society 
of N agents where they cooperate in a sharing environment (E) to 
realize a common intention of finding high-quality solution for an 
optimization task. Since the optimization task can be well-defined, 
the sophisticated negotiation [27] among agents is not necessarily. 
Instead, an agent is communicated with the others by indirect 
interactions, which are implicit implemented through the 
communication medium role of the environment (E). 
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Figure 1. An agent and the environment (E) it roams 

Without loss of generality, the agents are homogenous in the 
sense that they have the same organized structure. Figure 1 shows 
one of the agents and the environment it roams. All other agents 
are interacted with the environment in same way. 

2.2.1 Environment 
The environment serves as the domain in which agents roam [31]. 

Firstly, it contains an internal representation (FR) [36][41] of the 
optimization task, which encapsulates accessible rudimental 
knowledge, includes a virtual landscape [25] and some auxiliary 
information associated with problem structure. 

For the landscape, a quality evaluation rule (RM) is used for 
measuring which one has better quality between any two states 
( s ) in the representation space (SR). The quality evaluation 
implies the intention to attain the state that is better than another. 

For normal problems, there is a cost function f( s ) for each state 

s ∈ SR. Then the evaluation is realized by a O
MR ( as , bs ) rule:  

for ∀ as , bs ∈SR, if f( as ) ≤ f( bs ), then the as  is better than the 

bs , and O
MR  returns TRUE, else it returns FLASE. 

Secondly, the environment holds a socially-shared memory (MS), 
called collective memory [38], which serves as the blackboard for 
all agents by creating a shared past. The information flow from the 
agents to the MS is supported by the coordinating behavior (RCO) 
as in Fig. 1. In this sense, the environment also serves as an 
accumulation pool for the emergent collective behavior instead of 
a pure information provider as in cognitive architectures [1]. 

Thirdly, the environment keeps a central clock that helps 
synchronizing the behaviors of the total system, if necessary [31]. 

In fact, the environment can be seen as a pseudo autonomous 
entity for supporting the indirect cooperation of agents. 

2.2.2 Agent 
Each agent is a socially situated autonomous entity. Autonomy 
[31] is an attribute of a self-governed, self-directed entity with 
respect to its own status, free from the explicit control of another 
entity. The essence is that each entity is able to make decisions for 
itself, subject to the limitations of the available information. 

The central executive (CE), the most important component of 
working memory model [3][43] in term of its general impact on 
cognition, is responsible for manipulating the local behavior and 
behavioral rules of an agent, which govern how it should act or 
react to the available information on the representation of problem 
while determine the next status to which the entity will transit. 

The agent has two belief sources. Firstly, it possesses a private 
memory, called MA, which has limited capacity and can only be 
modified by agent itself. The MA is a fundamental mental 
component for supporting individual learning. Secondly, it can 
access to the MS, which is socially available from the environment. 

The law of behavior is socially biased individual learning (SBIL) 
as adopted by many species in real world [16], which is a mix of 
reinforced practice of own experience and socially available 
information. The SBIL is suggested to be a heuristic in ecological 
rationality [8][18], which  a) gains most of the advantages of both 
individual and social learning; and b) facilitates the emergent and 



collective properties by allowing learned knowledge to be 
accumulated from one generation to the next. 

Due to lack of enough knowledge on the landscape to be searched, 
the essential behavioral rule is generate-and-test rule (RGT). The 
essential components of an RGT rule include a generating part (RG), 
a solution-extracting part (RS) and a testing part (RT) [51]. The RS 
part has no influence on the problem-solving process. It just 
exports potential solution(s) during a run. Without loss of 
generality, it can be supposed that only the RG part can create new 
information that contains new potential solution(s), and the RT 
part only produces simple reflex behavior, which may determine 
nontrivial properties for some T_INFO elements in memory. 

2.2.3 Working process 
The framework runs in two phases. The first phase is memory 
initialization phase, which initializes the T_INFO elements in MS 
and in the MA of all agents according to the FR.  The second phase 
is generate-and-test phase. For a run, the number of cycles is T. 
The behavior of system in the tth ( [1, ]t T∈ ) cycle only relies on 
the status of system in the (t-1)th cycle. By running as a Markov 
chain process, the system can be analyzed in each cycle. 

Each cycle contains two clock steps: the C_PRE and the C_RUN. 

At the C_PRE step, the coordinating behavior (RCO) at the 
environmental level, which summarize the information submitted 
by all the agents into the MS, is executed, i.e.  

 ( )  ( )  ( 1)
( ){ | [1, ] },  CORt t t

A i S SM i N M M +∈ →  (1)

For simplicity, here only the observational information is taken 
into account, i.e. the T_INFO elements in all agents with same 
I_RC are collected into a T_INFO element in MS. It is significant 
since observational learning [5] can lead to cumulative evolution 
of knowledge that no single agent could invent on its own. 

At the C_RUN step, if an agent is activated, where its generate-
and-test rule is executed for generating new information by 
estimating the distribution of promising space according to 
available information in MA and MS and updating its MA, i.e., 

( )
 ( )  ( )
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(2)

Naturally, there are two run modes: a) full-run mode, where all 
agents are activated; b) partial-run mode, where only NACT agents 
(NACT [1, ]N∈ ), which are selected at random, are activated. 
Under same agent activated times, the system in partial-run mode 
often converges fast since it allows fast information diffusion. 

3. IMPLEMENTATION FOR THE TSP 
For solving the TSP, the implementation is realized in three steps: 
a) define the representation of the TSP (FR); b) initialize the 
memory; and c) design suitable generate-and-test behavior. 
According to no free lunch theorem [50], the domain knowledge 
of the problem must be embedded at the implementation stage. 

3.1 Representation of the TSP (FR) 
The representation (FR) provides a basic interface for accessing 
the essential domain information of the TSP, which includes a 

TSP landscape and a candidate set for accelerating the local 
search (LS), the basis of many good heuristic methods. 

3.1.1 The TSP landscape 
The TSP landscape is quite straightforward. It is a weighted 
complete graph with V nodes (or called cities) and a cost matrix 
D=(dij), where dij represents the length of an edge that connects 
between cities i an j (i, j∈ [1, V] ). Here we only concern with 
the symmetric TSP, which have dij = dji for every pair of nodes.  
The TSP then is to find a minimal-cost Hamiltonian tour that 
passes through each node once. Each state s  is a complete tour, 
which can be represented as a permutation (i1, i2, …, iV) of  the 
integer values from 1 through V, where the cost function is 

1 2 2 3 1
( ) ...

Vi i i i i if s d d d= + + +  (3)

The distance of two states is defined as the number of edges in 
which they differ [15][29][34]. 

In this paper, the original TSP landscape is used in order to allow 
a fair evaluation of the performance of algorithms. However, it 
should be mentioned that the transformation of the cost matrix 
always be an approach for improving the solving performance.  

One kind of methods does not change the relative order of the 
states. As in Lagrangean relaxation [23][40], the length of every 
tour is increased by 2 iπ⋅ ∑ as we associate with each node i a 

penalty value iπ  and use the transformed cost matrix D’=( '
ijd ), 

where '
ijd = dij+ iπ + jπ . Of course, the order for the same 

segments of a tour may be changed under different cost matrix. 

The other kind of methods indeed changes the global landscape. 
As in search space smoothing [21], the original landscape is 
transformed into a series of gradually smoother landscapes, which 
the smoothest one is solved at first and the solutions are used for 
guiding the following landscapes until the original one. 

3.1.2 Candidate set (EC) for local search 
Local search (LS), also known as neighborhood search, has been 
shown very effective for hard computational problems, including 
the TSP. A basic LS algorithm, under a predefined candidate set 
of neighborhood description, starts from an arbitrary complete 
tour and repeatedly improves the current tour till it is trapped into 
a local minimum. 2-Opt, 3-Opt and Lin-Kernighan (LK) 
algorithm [29] are representative LS methods. 

The complete graph for a symmetric TSP has (V2-V)/2 edges. 
However, it is intuitively that most of the possible edges will not 
occur in good tours because they are simply too long [40]. It is 
therefore reasonable to restrict major attention to promising edges, 
or called the candidate set, for accelerating local search (LS) 
methods. The examples of candidate sets include the k (k≥1) 
nearest neighbor subgraph, and the Delaunay graph, etc [40]. Of 
course, it is often expected the candidate set to be smaller so as 
not to result in a substantial increase in running time. 
Helsgaun [23] estimates the chances of a given edge being a 
member of a good tour by using minimum 1-trees [40]. A 1-tree is 
a spanning tree with an additional edge combined two nodes with 
degree 1. The minimum 1-tree is often used for estimating the 
lower bound on the optimum since it is a relaxation of the TSP. 
The estimation, or called Held-Karp bound [22], can be improved 



substantially on the 1-tree with Lagrangean relaxation [40] by 
applying subgradient optimization [22] for determining a certain 
transformation of the cost matrix with the suitable set of penalties, 
which each iπ is associated with each node i. 

In α-nearness measure [23], each edge has a corresponding α-
value, which is the minimum length when a 1-tree is required to 
contain the specified edge based on a transformed cost matrix. 
Intuitively, the more accurately Held-Karp bound achieved by the 
transformed cost matrix, the better estimation of α-values for the 
edges. Then the candidate edges of each node are sorted in 
ascending order of their α-values. Usually the minimum 1-tree 
shares many edges with an optimal tour. It is intuitive that the 
smaller α is for an edge, the more promising is this edge. 

3.1.3 The features of the TSP landscape 
The landscape is often studied in various ways. The first way is to 
understand the landscape in terms of simple parameters [44], in 
particular, to depict the phase transitions according to certain 
order parameters [10][17][24][53]. For the TSP, most researches 
are focused on the matrix D. Chessman et al. [10] investigated the 
standard deviation of the D as an order parameter by using a 
backtrack algorithm. Zhang [53] went deep into the precision of 
the elements in the D by using a branch-and-bound algorithm. 
The phase transitions in many hard computational problems have 
revealed interesting regularities across different problems and 
algorithms [24]. However, most real-world TSP instances are still 
classified as hard at the existing phase diagrams. 
The second way is to understand the landscape based on the hints 
accumulated from the solving experience of existing algorithms. 
Most modern LS variants [2][23][32][45] are essentially under 
the umbrella of iterated LS (ILS) [32], or called chained LS (CLS) 
[2], where the basic idea is to modify the current tour by applying 
a kick-move on a previous found tour instead of independently 
generated one. The intuition behind using chained starting tours is 
that the strong positive correlation between solution cost and the 
distance from the closest optimal tour, i.e., better local minima 
tend to have smaller distance to the closest global optimum by 
sharing many common partial structures [7][32][54]. The 
observations have led to the “big valley” hypothesis [7], which 
argues that the high-quality tours tend to concentrate on a very 
small subspace around the optimal tour(s) [46]. 

Moreover, the inherent features of a set of high-quality tours have 
been exploited in several ways. The first is reduction [29], which 
locks the edges in the intersection of the edge sets (EI) of the tours 
for speeding up the subsequent search. However, this method is 
brittle [54], especially as a locked edge is not part of good tour. 
The second is tour merging [11], which is to look for a high-
quality tour in a restrict graph (GR) consisting of the union of the 
edge sets (EU) of the tours through a “branch-width” algorithm. In 
fact, the number of edges in a GR can be quite few due to the large 
number of shared edges among high-quality solutions. However, 
optimizing over a GR can be hard as the original TSP instance. 
Besides, although a GR may contain most of edges of an optimal 
tour, it may not ensure containing at least one optimal tour, then 
the tour merging may be failed to achieve optimum. The third is 
backbone guided search [54], which makes using of global 
information embedded in the pseudo-backbone frequencies for 
changing the landscape. However, the local search may be trapped 
into a local minimum unaffected by the changed landscape. 

In this paper, the TSP landscape is exploited in the following 
ways: a) the LS method is applied at the initialization (or early) 
stage in order to reach the “big valley” as soon as possible [7]; b) 
The new tour(s) are generated based on the kick-move on a 
previous found tour as in the iterative LS [32]; c) an edge set (EU), 
which is represented in a set of high-quality tours, are used as the 
guiding information for the kick-move. The basic idea is that, for 
the edges to be introduced, most of them come from the EU and a 
few of promising edges are safely introduced by greedy search. 
Moreover, to use a EU with repeated edges instead of a restrict 
graph may utilize the pseudo-backbone frequencies implicitly; 
and d) the diversity among tours is maintained carefully: firstly, 
each starting tour is conserved in the private memory of each 
agent; secondly, the partial instead of the full information in EU, 
normally be a single tour, are used for guiding the kick-moves; 
and thirdly, the diffusion distance for each starting tour is 
restricted by an additional testing criterion on multiple trails. 

3.2 Memory initialization 
For simplicity, We use one T_INFO element in MA, i.e. a tour 
called ( )t

Ps . Hence the element in MS is
( )$ t
Ps ={ ( )

( )
t

P is | i∈ [1, N] }. 

Following a random initialization, each tour is improved by a LS 
method, indicated as LSMI. The default choice for LSMI is a 3-Opt 
with kNNI=20 neighborhood nodes in the candidate set. 

3.3 The generate-and-test behavior 
For solving the TSP, the generate-and-test behavior can be seen as 
a kick-move on as , the starting tour to be improved, as in ILS [32]. 

To improve the chances for escaping from the local optimal tours, 
the double-bridge (DB) [29][32], a non-sequential kick-move, is 
normally used [2]. Helsgaun [23] has extended it into a 2-stage 
kick-move, i.e., any infeasible 2- or 3-Opt move (producing an 
intermediate solution consisting sub-tours) followed by any 2- or 
3-Opt move, which produces a valid tour (by merging the sub-
tours). The infeasible intermediate solution is significant so as to 
alter the global shape of a tour [2]. However, the blind mutation 
should be avoided since it may be ineffective and inefficient. 

The kick-move guided by a high-quality edge set (EU) has been 
exploited extensively. Many of them [15][28][34][42] can be 
classified as the tour-guided 2-stage kick-move (TG2KM): guided 
by a tour bs in EU, the tour as  is first modified into an infeasible 
intermediate solution, normally consist disjoint segments or sub-
tours, which are then repaired by ingenious greedy mechanisms 
while considering available information, such as the EC. 

Many edge-based recombination operators, such as Voronoi 
Quantized Crossover (VQX) [42], Natural Crossover (NX) [28], 
Distance Preserving Crossover (DPX) [15], Edge Assembly 
Crossover (EAX) [34][35], etc., can be taken as the examples. 

Guiding by a tour instead of mutating blindly brings an implicit 
advantage by utilizing the distance between as  and bs . Normally, 
the larger distance, the large perturbation on as  is then allowed. It 
brings an adaptive control of the balance between exploration and 
exploitation along with the execution cycles. 

Using a single tour instead of the whole information available is 
simply because the former has inherent mechanism for preventing 
premature convergence by locally diffusion of information in a 



self-organized agent network while the latter needs sophisticated 
mechanism although it provides more complete information. 

Normally, new promising edges can only be safely introduced 
when repairing the intermediate solution in greedy way. Hence the 
unexpected edges that are introduced into the intermediate 
solution, which are not existed in the bs  and the set EC, should be 
as less as possible. The following RGT rule, called EA

GTR , is 
extended from the EAX [34], because it meets the requirement. 

3.3.1 The generating behavior 
The generating part (RG) is applied for generating new tour(s). 

The preliminary operation is to build the mappings between the 
external and internal information sources, i.e., from the ( )t

Ps  and 

the ( )$ t
Ps to the starting tour as  and the guiding edge set EU.  Here 

as = ( )t
Ps  so as to preserve information naturally by using the 

private memory; and EU= ( )$ t
Ps so as to make use of the cumulative 

pool. Moreover, the bs  is a tour selected from the ( )$ t
Ps at random 

so as to utilize the pseudo-backbone frequencies implicitly. 

By defining the GAB as a graph constructed by merging as  and bs , 
the edges on GAB are then divided into AB-Cycles [35], where an 
AB-cycle is defined as an even-length sub-cycle on GAB generated 
by tracing different edges of as  and bs alternately. As an AB-
Cycle is identified, then the edges making up the AB-Cycle are 
removed from GAB and the AB-Cycle is stored into the AB-Lib if 
it contains not only common edges of as  and bs . The procedure 
is repeated till no AB-Cycle could be extracted. 

Each AB-cycle in AB-Lib can be used as the guiding information 
for applying a kick-move on as  in two steps [35][49]. 

The first step is to generate an intermediate solution, i.e., by 
removing edges of as in the AB-cycle from as  and adding edges 
of bs in the AB-cycle to as . The result is a set of disjoint sub-
tours. It is obviously that all the changed edges of as  are selected 
from bs . Besides, the edges in as will be unchanged in the 
intermediate solution if the edges that connected to a node in bs  
belong to the edges that connected to the same node in as . 

The second step is to modify the intermediate solution into a valid 
tour by merging its sub-tours. Of course, it is a choice to apply the 
2-Opt for merging sub-tours [9]. For reducing the computational 
cost, a LS version, which can be seen as the first round of 2-Opt, 
is used [34]: two sub-tours are greedy merged, by deleting one  
edge from each sub-tour and adding two edges, where one of them 
is a node selected at random in the candidate set EC, to connect 
the nodes in both sub-tours with degree 1.  

Of course, to find a good tour by simple one trail is not always 
easy. Fortunately, there already are many AB-cycles in the AB-
Lib, which allows us to perform a multi-trail mechanism (MTM), 
or called iterative child generation (ICG) [35][49], i.e. to generate 
NMTM candidate tours, where each is based on an AB-Cycle 
selected in AB-Lib at random. The idea was also exploited by the 
Fitness-Distance-Based Diversification (FDD) [45] and the brood 
selection mechanism [48]. The default value for NMTM is set as 30. 

3.3.2 The testing behavior 
The testing part (RT) is used for maintaining the MA, which is 
similar as updating the starting solution in iterated LS, based on 
the competition among the generated candidate tours.  

The smaller difference between two information sources for the 
RG part, the higher probability for falling into one of the local 
minima associated with the guiding information [7][15]. Hence, it 
is critically to maintain the diversity of information intentionally 
since the high-quality solutions are already rather close.  

For the competition of generated tours, it may easily get trapped 
in specific regions of the TSP landscape if we only consider the 
essential high-quality criterion [49]. The FDD mechanism [45] 
hence utilizes an additional criterion, i.e., high quality as well as 
rather distant from the starting tour. 

If as  is located at a local valley, then a tour better than as  is 
located at another valley of the TSP landscape. Here if only such 
tours are allowing for competition, then it is no long necessarily to 
keep large distance from the current solution intentionally. 

It is expected that the private information in MA has strong 
influence on the generated states, so as to keep a local diffusion 
effect. Hence large adjustments are possible, but are much less 
probable than small adjustments [4]. For a generated tour cs with 

better quality than as , the cost function is transformed as follows: 

'( ) ( ( ) ( )) /( ( , )) DC
c a a cf s f s f s DIS s s= −  (4)

where ( , )a cDIS s s is a function to reflect the increasing of 

distance between as  and cs , and CD is called diffusion coefficient. 
As in [34], the ( , )a cDIS s s function is defined as half of the 
number of edges in the corresponding AB-cycle to reduce 
computational cost for calculating the exact distance. 

If CD=0, '(   )f s represents the high-quality criterion, as in EAX-
1AB [34][35] or in brood selection mechanism [48]. If CD=1, 

'(   )f s  represents the criterion as in EAX-Dis [35]. If CD is very 

large, the cs  will be selected from the tours with smallest DIS 
value. In fact, the CD determines the diffusion velocity of 
information. The default setting is CD=1.5. 

The selected cs  is then used for replacing the ( )t
Ps  in MA. Hence 

Px is a steady-state solution satisfying the above testing criterion. 

4. EXPERIMENTAL RESULTS 
The experiments are carried out on a set of real-world instances 
with 1000≤V<3000 nodes in TSPLIB [39]. 

The results are compared with the iterative LS (ILS-FDD) [45] 
and the iterated backbone guided LK algorithm (IBGLK) [54]. 

The ILS-FDD generates a new starting tour for ILS with Fitness-
Distance-Based Diversification (FDD) [45]. Their 3-Opt uses 
some standard speed-up techniques under a candidate list of 40 
nearest neighbors. The ILS version has achieved best performance 
while comparing to three other algorithms, i.e., the genetic 
algorithm (GA) using DPX-crossover (GA-DPX) [15], the repair-
based GA [48], and the MAX-MIN ant system (MMAS) [46]. 

c

c

c



The IBGLK [54] combines pseudo-backbone utilization with the 
iterated LK algorithms by considering two issues: the first issue is 
to construct unbiased samples of local minima for constructing 
pseudo-backbone; and the second issue is to alternate between 
BGLK and regular LK once each of them fails. For LK algorithm, 
length-20 nearest nodes, don’t look bits [6], and the two-level tree 
[14] tour representation, are used. The IBGLK version has 
outperformed than three versions of LK algorithms [54], i.e. the 
ILK-1-run, the ILK-5-run, and the ILK-10-run. 

Table 1 gives the setting parameters for the standard case of 
MAOSE, called #Std, where EC indicate the candidate set. Table 2 
gives five other cases by changing one parameter value based on 
the template of #Std. As same as in [45], 25 trails are run on 
pr1002, pc1173, d1291, and 10 trails are run on other instances. 

Table 1. The parameter setting for the case #Std of MAOSE 
Parameter N NACT EC LSMI CD kNNI NMTM
Value 300 300 α-measure 3-Opt 1.5 20 30

 
Table 2. The parameter changes for other cases (based on #Std) 

Case #NA100 #N400 #D1.0 #NN #2Opt 
Changes NACT =100 N=400 CD=1.0 EC =nearest LSMI=2-Opt

 
Table 3 shows the results for average percentage deviation (∆avg) 
from the optimum by ILS-FDD [45], IBGLK [54], and the 
MAOSE cases. Besides, the average CPU-time (sec) for the ILS-
FDD and the IBGLK, and the average cycles ( T ) for the MAOSE 
cases, are listed. We also list the run-time (sec) for the case #Std 
and #400. The result for si1032 is just for reference and is not 
used in the following discusses since it is not tested by ILS-FDD. 
At the last row, the average values for all instances are calculated. 

For the MAOSE cases, the calculation time mainly contains two 
parts: the first is N times of LS executions at the initialization 
stage; the second is ACTN T⋅  times of RGT executions by agents. 
The less RGT executions is normally preferable, although there are 
great deviations for the costs between different RGT executions. 

Both the ILS-FDD and the IBGLK are coded in “C”. The ILS is 
run on 450MHz P3 processor, and the IBGLK runtime is 
normalized for a 500MHz Alpha. The MAOSE is coded in JAVA, 
and is run on 2.8GHz and 3GHz P4 processors in a public cluster. 
In fact, to compare the computational cost is not so easy since we 
can only count run-time instead of CPU-time by JAVA. However, 
the average run-time of the case #Std is 16.2% of that of the 
IBGLK. Hence the case #Std can be at least comparable with the 
IBGLK even by only considering the speed difference of CPUs. 

The case #Std can achieve the optimum of thirteen instances in all 
trails, which is better than both the ILS-FDD and the IBGLK. 
Besides, here we use worse than/equal to/better than (W/E/B) 
analysis. For #Std vs. the ILS-FDD, the W/E/B is 2/6/12, which 
means that for the results of #Std, 2 instances was worse than, 6 
instances were equal to, and 12 instances were better than that of 
ILS-FDD. For #Std vs. the IBGLK, the W/E/B is 3/6/11. 

The effects of parameters are also concerned. From the number of 
solved instances, the #Std is slightly better than #D1.0, #NN, and 
#2Opt. However, as the parameter CD is increased from 1.0 to 1.5, 
the average T  is increased by 14.1% due to the reduced diffusion 
velocity. Hence for the parameter CD, the balance between the 

quality and the cost must be minded. As the α-measure instead of 
the nearest measure for the candidate set is used, the average T  
is reduced by 19.3%, which due to the better estimation of 
promising edges. Although 3-Opt itself is normally slower than 
the 2-Opt, the average T can be reduced by 42.4%. Hence for the 
LSMI, the 3-Opt is normally preferable than 2-Opt as the T is large. 

Then the partial-run mode is checked by two cases: #NA100 and 
#N400. For the #NA100 and the #Std, the time to be costed at the 
initialization stage is same. Although the average ∆avg is slight 
worse, the RGT execution times of #NA100 is 50.8% of that of 
#Std. For #N400, it can achieve quite good performance in 
reasonable run-time (sec), where the fails only occurs in five 
instances, which are mainly due to the enriched socially-shared 
information and preserved diversity among the larger society. 

5. CONCLUSIONS 
This paper has described an extended multiagent optimization 
system (MAOSE) based on autonomy oriented computing, which 
consists of a society of agents under ecological rationality where 
they cooperate in a sharing environment to search on a virtual 
landscape, for solving hard computational problems. Although 
each agent only possesses limited memory and simple behavioral 
rules, the collective properties can emerged from their cooperation. 

From the viewpoint of computation, each agent is a stochastic 
algorithm. Although the agents have same organized structure, 
they become heterogonous since their memories are initialized 
with different contents. If the agents do not utilize the information 
in MS, then the system becomes a portfolio of algorithms [20][26]. 
The studies [20][26][33] have indicated the portfolios may have 
unequivocal advantage than any of its individual member 
algorithms running alone for dealing with hard computation 
problems. In MAOSE, the agents are cooperated through the 
information located in MS. Then the multiagent system becomes a 
cooperative algorithm portfolio. The cooperation between agents 
will introduce statistical correlations between their performance, 
which is capable of reducing both the expected time and the 
solving risk when manifested in negative correlations [26]. 

Under the MAOSE, the realization of a problem solver then can be 
divided into three parts: a) encode the representation of the 
problem into the landscape and the possible auxiliary knowledge; 
b) construct the memory elements at the initialization stage; and c) 
design the generate-and-test behavior guided by the law of 
socially-biased individual learning. The implementation has been 
demonstrated on the TSP, where all three parts are realized by 
exploiting the problem features. The extensive experimental 
results on real-world instances in TSPLIB show its efficiency as 
comparing to the ILS-FDD and the IBGLK. 

One possible extension of current work is to apply the agents for 
solving other well-studied hard computational problems, which 
are key components for many practical tasks, by utilizing inherent 
features. Another possible extension is to study rational strategies 
for agents to deploy multiple RGT rules under certain knowledge. 

The agents may also be adapted to the cooperative distribute 
problem solving (CDPS) [13][52] by requesting the guiding 
information from other agents. Of course, the negotiation 
mechanisms then may be required, especially as the agents use 
various virtual landscapes for involved task. 
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Table 3. The average results on TSPLIB instances (1000≤V<3000) by ILS-FDD [45], IBGLK [54] and MAOSE cases 

F ILS-FDD (sec) IBGLK (sec) #NA100 ( T ) #N400 ( T /sec) #Std ( T /sec) #D1.0 ( T ) #NN ( T ) #2Opt ( T )
dsj1000 0.0091(604.2) 0.01 (2066) 1E-04 (119.5) 0 (89.4/477) 0 (78.8/203.9) 3E-4 (58.9) 0 (100.6) 0 (103.8)

pr1002 0 (93.5) 0.00 (345) 0 (76.9) 0 (59.52/338.6) 0 (56.68/126.6) 0 (44.92) 0 (78.4) 0 (106.08)

u1060 0.009 (671.8) 0.02 (873) 0 (106.9) 0 (67.3/411.1) 0 (63.4/351.7) 0 (51.3) 0 (86.3) 0 (109.6)

si1032 - 0.00 (772) 0 (2.1) 0 (1.7/51.7) 0 (1.5/21.7) 0 (2.5) 1E-4 (9.2) 8E-4 (9.8)

vm1084 0.011 (340.8) 0.02 (403) 0 (67.0) 0 (55.8/388.9) 0 (52.5/327.9) 0 (42.9) 0 (69.9) 0 (69.9)

pcb1173 0.0011 (493.8) 0.00 (213) 0.004 (86.9) 7E-4 (68.04/466.4) 6E-4 (61.88/168.9) 0.003 (55.4) 4E-4 (71.7) 0 (105.7)

d1291 0 (320.5) 0.08 (1086) 0 (39.2) 0 (30.04/345.1) 0 (28.48/137.7) 0 (22.36) 5E-4 (39.2) 0.003 (47.2)

rl1304 0 (23.6) 0.00 (504) 0.014 (55.8) 0 (39.8/339.1) 0 (39.9/162.7) 0.007 (33.6) 0.002 (49.1) 0 (50.8)

rl1323 0 (148.3) 0.00 (582) 0 (55.3) 0 (40.7/353.2) 0 (35.2/279.4) 0 (30.4) 0.005 (49.3) 0 (55.5)

nrw1379 0.051 (867.3) 0.06 (440) 0.006 (147.5) 0.003 (102.8/417.2) 0.004 (88.4/385.1) 0.003 (72.8) 0.005 (116.8) 0.006 (176.4)

fl1400 0 (218.2) 0.00 (19317) 0.002 (147.7) 0 (111.1/460.5) 0 (102.3/448.0) 0 (94.9) 0 (115.8) 0 (116.8)

u1432 0.039 (763.4) 0.00 (617) 0 (97.4) 0 (67.5/334.5) 0 (59.7/570.3) 0 (53.5) 0.003 (75.5) 0.008 (132.4)

fl1577 0 (648.5) 0.00 (10430) 0.01 (102.1) 0.017 (72.3/690.6) 0.027 (47.5/239.9) 0.034 (42.8) 0.053 (84.7) 0.009 (98.8)

d1655 0 (803.1) 0.00 (1869) 8E-04 (94.8) 0 (67.3/777.3) 0 (60.7/325.1) 0 (46.8) 6E-4 (94) 0.002 (129)

vm1748 0.031 (1267.4) 0.01 (829) 0 (128.3) 0 (96.1/1133.1) 0 (86.7/612.5) 0 (69.3) 0 (108) 0 (124.8)

u1817 0.056 (1316.3) 0.16 (680) 0.001 (136.4) 0 (91.4/1125.2) 0.003 (74.3/439.7) 0.006 (62.9) 7E-4 (101.3) 0.008 (126.3)

rl1889 0.0064(1101.4) 0.22 (1110) 0 (95.7) 0 (72.8/567) 0 (65.8/525.1) 4E-4 (53.3) 0 (88.9) 0 (91.2)

d2103 0.001 (1747.7) 0.00 (8669) 0.036 (100.6) 0.003 (63.9/495.5) 0.019 (44.7/365.6) 0.004 (41.5) 0.076 (50.6) 0.005 (107.5)

u2152 0.061 (2401.9) 0.19 (808) 0.002 (114.8) 0 (79.4/714.7) 0.002 (71.9/662.7) 5E-4 (57.6) 0 (84.9) 8E-4 (149)

u2319 0.11 (1233.8) 0.04 (2091) 0.119 (143.5) 0.041 (163.1/1434.6) 0.038 (132.1/1251.8) 0.025 (177.2) 0.067 (158.5) 0.049 (256.2)

pr2392 0.004 (2079.2) 0.14 (715) 0 (175.5) 0 (129/1159.6) 0 (120.5/1123.0) 0 (89.9) 0 (152.7) 0 (225.1)

Average 0.019 (857.2) 0.047 (2682.3) 0.0098 (104.6) 0.0032 (78.4/621.5) 0.0047(68.6/435.4) 0.0041(60.1) 0.010 (85.0) 0.0045 (119.1)




