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Abstract – In this presented paper, to accomplish 
semiconductor device synthesis for TCAD application, the 
Parallel Genetic Algorithm is applied as the core searching 
algorithm for “acceptability region” of device designables, 
which satisfy the designed device performance. The results 
of some experiments on FIBMOS are shown, which indicate 
the Parallel Genetic Algorithm is an efficient and fast 
searching algorithm to fulfil device synthesis. Some potential 
problems related to device synthesis are also discussed. 

 
 

1. INTRODUCTION 
 

    A new and promising TCAD application called 
technology synthesis, or process synthesis, has been 
explored recently [1][2]. Technology synthesis employs a 
top-down approach to process design, starting with the 
desired results (such as performance, reliability, cost/yield, 
etc.) and propagating this requirement downward through 
the process steps. Technology synthesis can be classified 
into several abstraction levels [Fig.1], which separate the 
design problem into several stages that can be potentially 
solved concurrently. 
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Fig.1 Five abstraction levels and the corresponding stages for 

Technology Synthesis 
 

    As the first step in technology synthesis, device 
synthesis is to determine the specification on the device 
designables from the requirements on the device 
performance. Device performance defines the electrical 

behavior of the device. Examples are on and off currents, 
threshold voltage, output resistance, etc. for MOS devices. 
Device designables are the parameters that specify the 
topography and impurity concentrations associated with a 
device. Typical designables are physical gate length, 
oxide thickness, doping profile descriptors (such as rp and 
∆rp in the Gaussian description of an implanted doping 
profile), etc. 
    Device synthesis is performed through searching over 
the space of device designables specified by designers 
[Fig.2]. With forward device models and some efficient 
search algorithms, the space of acceptable device 
designables that meet the performance specifications is 
determined. Instead of considering a single point solution 
to the device design, the region of acceptable devices in 
the designable space is considered, which is termed the 
“acceptability region”.  
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Fig.2 Flowchart of Device Synthesis 

 
In this paper, we consider device synthesis as a problem 

of acquiring a solution space, so it is the most important to 
apply some efficient and fast searching algorithms to get 
multiple solution points. Thus, the core searching 
algorithm we employs is the Parallel Genetic Algorithm[3] 
(PGA) due to its efficient search and optimization ability. 
As an example, we have applied the PGA to synthesis the 
Focused-Ion-Beamed MOSFET(FIBMOS)[5][6]. The 
results show that the aim of device synthesis can be well 
satisfied. At the same time, some potential problems 
related to device synthesis are also discussed in this paper. 
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2. KEY FACTORS FOR DEVICE SYNTHESIS 
 

1) Selection of Searching Algorithms 
    General searching algorithms(such as Monte Carlo 
methods) are short of necessary optimization directions, 
while general optimization algorithms(such as 
hill-climbing methods) are short of global searching 
abilities. To acquire a solution space, it is necessary to use 
an efficient searching algorithm, which can produce 
enough useful solution points to construct the solution 
space or its bounds while not processing too many 
redundant computations. Genetic Algorithms (GA)[3][4] 
can provide us this opportunity. GA is a kind of random 
algorithm which searches the space in the direction of 
optimizing the defined objectives without the provision of 
initial guesses. Further more, it is internal parallel 
computing, which means GA can explore many schemes 
through only one genetic operation. During its search 
process, more computations are run to reach the objective 
optimization, which ensures more solution points will be 
explored to construct a solution space or its bounds. 
    In our previous work[7], satisfied results have been 
acquired with Standard (or Sequential) Genetic 
Algorithms (SGA)[4] in most cases. But in some cases, 
more computations and time have to be taken to acquire a 
satisfied solution space with SGA. It is reported[3] that 
several competing sub-populations could be more 
search-effective than a wider one in which all the 
individuals were held together. A distributed model for 
GA is thus proposed, called island model after the 
inspiring biological observation, where the population of 
chromosomes is partitioned into a number of isolated 
sub-populations, each one of which evolves independently, 
trying to optimize the same function. A neighborhood 
structure is defined over this set of sub-populations, so 
that periodically each sub-population swaps its worst 
individuals with the best ones of its neighbors. This 
swapping activity is called migration of individuals. The 
PGA applied in this paper is based on the island model. 
     Experiments have shown that PGA is more efficient 
and faster than SGA to acquire a solution space. The fact 
that PGA is superior to SGA can be explained by the 
following two reasons : 1) During the same time interval, 
PGA can process more device simulations than SGA by 
the means of parallel device simulation, so PGA can 
explore a larger space than SGA; 2) According to the 
migration strategy, PGA is more likely to reach global 
optimum points while SGA is often trapped into local one. 

2) Device Parameterization[2] 
    Numerical device simulators are commonly run based 
on a device description file including many command 
lines, which defines the grid structure, impurity 
distribution, electrodes, and etc. But some descriptions 
aren’t appropriate for device synthesis because they can’t 
be mapped directly from the description file to device 
structure and impurity distribution. For example, the gate 
length isn’t an apparent parameter in PISCES description 
files. In our present work we build a parameterized 
FIBMOS[Fig. 3], which is primarily composed of two 
parameterized structures: a fundamental MOSFET device 
structure (characterized by Leff, Tox, Xj, Nsd, Nsub, etc) and 
a FIB implantation structure (characterized by FIB-X, 
FIB-Dose, and FIB-Energy). 
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Fig.3 Device Parameterization for FIBMOS 
 

The parameterized FIBMOS provides an easy-to-use 
data interface to modify device designables of FIBMOS, 
which is useful for device synthesis, device simulation 
and generation of response surface models for FIBMOS.  
 
3) Device Simulation 
    A numerical device simulator costs much time to run a 
device simulation. Since many device simulations must be 
run in a device synthesis task, it is unfeasible for device 
synthesis to use a numerical device simulator directly. An 
efficient alternative is to generate response surface 
models(RSMs) for a specific device by design of 
experiments with a device simulator. With the generated 
RSMs, device synthesis can be run faster than ever. 
 
 

3. DEVICE SYNTHESIS CASES OF FIBMOS 
 
    We applies the GA to synthesize a 0.6µm FIBMOS 
whose FIB-Dose is fixed at 1e14cm-2. The device 
performance of FIBMOS includes on current (Ion), off 
current (Ioff), and dynamic output resistance (Rout) 
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[Table.1]. The device designables include lateral 
implantation position (x) and implantation energy 
[Table.2]. Here the energy is a doping profile descriptor 
corresponding with the vertical distance (rp) and vertical 
deviation (∆rp) of the implantation profile at the implanted 
point. The device simulation is done with the numerical 
simulator – PISCES2ET[8] in our experiments. 
 

Table 1  
Device performance of FIBMOS 

Name Objective Unit 
Ion Ion≥1.5e-4 A/µm 
Ioff Ioff≤1e-12 A/µm 
Rout Rout≥1e5 Ω 

 
Table 2 

 Device designables of FIBMOS 
Name Min Max Unit 
FIB-X 0.26 0.56 µm 

FIB-Energy 10 200 Kev 

(Note: The channel region of FIBMOS starts from 0.26µm and 
stops at 0.86µm in the lateral direction) 
 
    To apply the GA efficiently, the fitness function must be 
provided carefully. The fitness function we designed for 
three objectives are listed as the following: 

Fitness function for Ion 
  FF-Ion = 0, when Ion≥1.5e-4 

(1.5e-4-Ion)/Ion, when Ion<1.5e-4 
Fitness function for Rout 
  FF-Rout = 0, when Rout≥1e5 

(1e5-Rout)/ Rout, when Rout<1e5 
Fitness function for Ioff 
  FF-Ioff = 0, when Ioff≤1e-12 

(Ioff -1e-12)/1e-12, when Ioff>1e-12 
Total fitness function (Acceptable error) 
  FF = FF-Ion + FF-Rout + FF-Ioff 

 
Each set of device designables with an acceptable error 
below 5% is considered as an acceptable solution point to 
construct the device acceptability region. It should be 
noted that we use a different penalty term in the 
lower-bound evaluation (Ion and Rout) from that in the 
upper-bound evaluation (Ioff). That can ensure a faster 
convergence than the normal penalty term. And this kind 
of penalty term definition can only be used in such 
algorithms as GA, which can optimize functions whose 
first-order derivatives aren’t continuous. 
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Fig.4 Results of SGA which costs 1000 device simulations 

in a workstation 
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Fig.5 Results of SGA which costs 3000 device simulations 

in a workstation 
 

    Results with the SGA are shown as Fig.4, where 1000 
device simulations are cost to finish about 18 generations. 
8 results are got and the best acceptable error is 0.595%. 
Results with the SGA are shown as Fig.5, where 3000 
device simulations are cost to finish about 55 generations. 
32 results are got and the best acceptable error is 0.363%. 
Then a conclusion can be drawn that more device 
simulation time must be cost to acquire some satisfied 
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results with the SGA. From the following discussion, we 
can see that the PGA can get the same satisfied results as 
those of the SGA with much less simulation time. 
    To apply the PGA, we design the island model as Fig.6. 
Each island represents a UNIX workstation to run a 
sub-population evolution. There are totally three 
workstations to finish the PGA and every neighboring two 
islands migrate their 10% of best individuals every three 
generations, which is accomplished with the UNIX socket 
communication. One thing should be pointed out is that 
the initial population of each island should be generated 
randomly with different mechanisms. 

Island 1

Island 2 Island 3

 
Fig.6 The island model to finish the PGA for FIBMOS 
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Fig.7 Results of synchronous PGA which costs 1000 device 

simulations in each workstation 
 

    Results with the synchronous PGA(fast workstations 
will wait for slow ones) are shown as Fig.7, where 1000 
device simulations are cost in each workstation to finish 
about 18 generations. 47 results are got and the best 
acceptable error is 0.358%. Results with the asynchronous 

PGA(fast workstations will not wait for slow ones) are 
shown as Fig.8, where 1000 device simulations are cost in 
each workstation to finish about 18 generations. 34 results 
are got and the best acceptable error is 0.363%. The actual 
acceptability region is shown in Fig.9, which is got with 
22800 device simulations(The precision of FIB-X is 0.005 
and the precision of FIB-Energy is 0.5). 120 results are got 
and the best acceptable error is 0.398%. So the 
acceptability region acquired by the PGA matches the 
actual one well. It should be pointed out that pure device 
simulations with the assigned precision of device 
designbales are unfeasible, especially when the dimension 
of device designables is large or the actual acceptability 
region only occupies a very small part of the pre-assigned 
searching space of device designables(In this case, only 
120/22800=0.526% of all simulation results are the 
satisfied ones.). 
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Fig.8 Results of asynchronous PGA which costs 1000 device 

simulations in each workstation 
 

    To compare different algorithms, we summarize above 
experiment results as Table.3. The conclusion can be 
drawn that the PGA can get more satisfied results in 
shorter time than the SGA. The more islands join the PGA 
for device synthesis, the better and the more satisfied 
results can be found. Especially when the dimension of 
device designables is large, the PGA seems to be the only 
efficient way to get satisfied results in reasonable time. As 
for the synchronous PGA and the asynchronous PGA, the 
latter can only be superior if more device simulations are 
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performed in the faster workstations than those in the 
slower ones. 
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Fig.9 Results of 22800 device simulations with the assigned 
precision of device designables in a workstation 

 
Table.3 

Experiment results of different algorithms 
Algorithm SGA SGA Asyn 

PGA 
Syn 
PGA 

Number of device 
simulations in each 
workstation 

1000 3000 1000 1000 

Number of total 
device simulations 

1000 3000 3000 3000 

CPU Time (1 for 
1000 serial device 
simulations) 

1 3 1 1 

Number of results 8 32 34 47 
The best  
acceptable error(%) 

0.595 0.363 0.363 0.358 

 
 

4. CONCLUSION 
 

    In this paper, the Parallel Genetic Algorithm is applied 
to fulfil device synthesis. Device synthesis cases of 
FIBMOS show that the PGA is an efficient and fast 
searching algorithm to get the acceptability region of 
device designables. Based on the acceptability region, 
process engineers can select a set of device designables 

(i.e., by the sensitivity analysis of all acquired results) to 
meet the desired device performance and then perform 
next steps of technology synthesis. Further more, by 
analyzing the acquired acceptability region, some 
unknown or ignored device characteristics can be 
explored. So device synthesis also provides an 
opportunity for design engineers to study novel devices. 
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