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Abstract – Advanced traffic signal control systems require high-frequency predictions of traffic

flows for effective real-time operations. However, in urban road networks, various sources of

uncertainty can significantly degrade the accuracy of short-term flow predictions. In this paper,

we study how to strengthen schedule-driven traffic control, a decentralized approach to real-time

traffic control that has been shown capable of achieving scalable traffic network optimization in

simulation, to enable its effective and stable operation in the dynamic real world. Strengthening

strategies are proposed to mitigate several types of uncertainties in urban environments, based on

a set of features extracted from limited vehicle detection information. Their effectiveness is then

demonstrated in the context of a pilot implementation.



INTRODUCTION

Traffic congestion results in substantial costs for drivers and negative impacts on environmental

conditions (1). As an important topic in implementing intelligent transportation systems (ITS),

it is generally recognized that adaptive traffic control systems (ATCS) that adjust signal timing

sequences based on the current traffic conditions offers the biggest payoff for reducing congestion.

Various ATCSs have been proposed in past years (2, 3). Some of them are based on para-

metric optimization that adjusts three major types of signal timings, i.e., cycle lengths, green splits,

and offsets. Typical examples are SCOOT, SCATS, and ACS-Lite (4). Basically, each intersection

operates through its sequence of phases with calculated green splits in a cycle that is offset from

those of its neighbors. These ATCSs rely heavily on historical average volumes as the prediction

of traffic flows. Thus, it is difficult for these methods to exploit the significance of high-frequency

(e.g., second-by-second) predictions of actual traffic flows (5).

Many other ATCSs use model-based control (including model predictive control) methods.

Typical examples are OPAC (6), CRONOS (7), RHODES (8), and some others (9, 10, 11). For

intersection control, these methods proceed according to a rolling horizon and attempt to produce

a good signal sequence over a specified planning horizon.The basic challenge for existing methods

is computational efficiency, as they are not real-time feasible for realistic planning horizons (2) and

are often forced to plan at coarse time resolutions (e.g., 5 seconds) or less effective approximations,

due to the inefficiency of searching in an exponential planning search space.

Schedule-driven traffic control (12, 13) is an integration of traffic flow theory and artifi-

cial intelligence (AI) research that deals with multi-actor interactions, to address the challenge of

achieving scalable traffic network optimization using high-resolution flow data and taking advan-

tage of rapid online planning. At its core is a SCHedule-driven approach to Intersection Control

(SchIC) (12) that is applied in a totally decentralized manner. Equipped with compatible interfaces

to the inputs and outputs assumed by traditional model-based control approaches, SchIC defines

a scheduling search space that enables efficient computation of near-optimal solutions, and it has

been shown to outperform other state-of-the-art approaches (e.g., COP (14)) on optimality and

efficiency. In a road network, the local scheduler of each intersection operates asynchronously

and requests scheduled output flows from its direct upstream neighbors to increase its visibility

of future incoming traffic from direct and indirect neighbors. If necessary, additional coordina-

tion mechanisms are applied to adjust the local schedules of each intersection to compensate for

mis-coordination with its neighbors.

However, to be effective in practice, a real-time traffic control method requires quite accu-

rate knowledge of traffic flows (3, 5). Given that prediction of local traffic flows must be accom-

plished with a limited number of sensors (e.g., induction loops and video detection) (5, 15, 16),

various uncertainty issues can degrade the accuracy of flow prediction in real-world urban traf-

fic control. The quality of vehicle detectors might be highly dependent on proper installation.

For video detection, the performance is also influenced by dynamic environmental factors, e.g.,

weather, lighting, and traffic conditions (17). Mis-counting or over-counting might also be caused

by arbitrary lane-changing behavior of human drivers. In a urban environment, passenger cars,

trucks, and buses share the right of way. Temporary (partial) lane blockages might be caused by

turning trucks, stopping buses, illegal parking, and on-street parking process, etc. Some roads

might have side streets to contribute hidden flows that are not covered by any detectors. In general,

the flow prediction process contains a predictable part and an unpredictable part (5), and in the

real world, these sources of uncertainty can make the unpredictable part very significant. These
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nontrivial perturbations, however, are often ignored in existing work (5, 12, 13, 18).

Recently, the decentralized, schedule-driven traffic control approach of (12, 13) has been

incorporated into the SURTRAC system (Scalable Urban TRAffic Control) for pilot testing on a

nine-intersection road network in the East Liberty area of Pittsburgh, PA. One basic challenge is

coping with the extent and diversity of real-world uncertainties that can be found in this urban road

network. In this paper, we propose several strengthening strategies aimed at achieving effective

and stable operation in the face of these uncertainties, and evaluate their effectiveness. Before dis-

cussing these strategies, we first summarize our basic schedule-driven approach to real-time traffic

control in a road network with peer-to-peer communication between neighboring intersections.

SCHEDULE-DRIVEN TRAFFIC CONTROL

Schedule-driven traffic control (12, 13) is an integration of traffic flow theory and artificial intelli-

gence (AI) research in decentralized multi-agent planning and coordination. As shown in Figure

1, schedule-driven traffic control can be described in terms of intersection and network layers.

FIGURE 1 Schedule-driven traffic signal control: (a) Intersection level (Scheduling search

space); (b) Network level (Non-local impacts for an intersection: DD = direct downstream;

DU = direct upstream; IU = indirect upstream).

We focus on a road network of signalized intersections. For each intersection, the traffic

light cycles through a set of phases I, and each phase i ∈ I governs the right of way for a set of

compatible movements from entry to exit links (roads). For traffic signal control, a signal sequence

(SS) contains a sequence of phases and associated durations, where basic safety and fairness can be

guaranteed using some signal timing constraints: For a pre-specified phase sequence, the yellow

light after each phase i runs for a fixed duration (Yi), while each phase i has a variable duration (gi)

that can range between a minimum (Gmin
i ) and maximum (Gmax

i ).

Each intersection is controlled by a local scheduler that holds a private signal sequence

SSTL for a finite future time, and makes decisions to extend SST L according to a rolling horizon.

The system objective is to minimize the total delay of vehicles traveling through the network.

The intersection layer (Fig. 1a) is used for considering the significance of short-term (e.g.,

second-by-second) variability of traffic by searching in a prediction horizon H. To attain both the

efficiency and optimality, a schedule-driven intersection control (SchIC) strategy is used (12).
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The vehicles in a given traffic flow are characterized as a job sequence C = (c1, · · · ,c|C|),
where |C| is the number of jobs in C. Each job c is defined according to the number of vehicles in

c and the expected arrival (departure) time at the intersection respectively for the first (last) vehicle

in c. Two simple techniques, i.e., anticipated queue and threshold-based clustering (12, 19), are

used to aggregate queuing and arriving vehicles.

At each decision time, the vehicles in the current prediction horizon H are organized into

a set of inflows (CIF,1, · · · ,CIF,|I|), where each |CIF,i| is a job sequence that has the right of way in

a given phase i ∈ I. In the scheduling search space, each full schedule contains a sequence of all

jobs that pass the intersection at the shortest time, subjected to the given timing constraints. The

corresponding control flow (CCF ) contains the results of applying a signal sequence (which can be

extracted from each schedule) that clears all jobs in the inflows. The objective is to find a schedule

of jobs with the minimal delay.

A forward recursion, dynamic programming process is then used to efficiently solve the

scheduling problem. From a constructive view, the state space can be organized as a decision

tree: Each schedule is built from the root node, and a job is added at each stage. At the same

depth in the tree, states are grouped if they have the same jobs (with different orders) and the same

last job (referring to the same last phase). A greedy state elimination strategy is then applied in

each group, where only the state reached with the minimum delay is kept while all other states

are eliminated. Thus, most branches are pruned in the early stages. The total process has at most

|I|2 ·∏
|I|
i=1(|CIF,i|+1) state updates, where |CIF,i| ≤ H is the number of jobs in the ith inflow, and

each state update can be executed in constant time. Thus, the time complexity is polynomial in the

prediction horizon H since |I| is limited for each intersection in the real world. SchIC can utilize

high-resolution flow data in a long prediction horizon (12).

If an intersection has sufficiently long views, SchIC can efficiently achieve near optimal

solutions. However, when operating in a larger road network, the local scheduler might be sus-

ceptible to myopic decisions that look good locally but not globally, and thus must incorporate

non-local impacts from their neighbors to extend the visibility.

For each intersection, the network layer (Fig. 1b) is used for incorporating non-local im-

pacts. For scalability, the communication is limited to direct neighbors.

The basic protocol is that each intersection only send out its scheduled outflows to its down-

stream intersections. For each intersection, each schedule describes a control flow, i.e., the results

of applying the corresponding signal sequence that clears all jobs in the current inflows. With the

auxiliary information of a road-ratio function (13) of the inflows and turning movement proportions

at the intersection, the outflows to the exit roads can be obtained. Intuitively, for an intersection,

the outflows of upstream intersections can form optimistic non-local inflows. The joint local and

non-local inflows essentially increase the look-ahead horizon for an intersection. Due to the chain

effect, a sufficiently long horizon extension can incorporate non-local impacts from indirect up-

stream neighbors. The optimistic assumption that is made is that direct and indirect neighbors are

trying to follow their schedules. Normally, the optimization capability of SchIC results in sched-

ules that are quite stable, given enough jobs in the local observation and large jobs (platoons) in the

local and non-local observation. It is also the case that minor changes in the schedules of neighbors

can often be absorbed, if there are sufficient slack time between successive jobs.

In the original SchIC, maximum green constraints are no included in the optimization pro-

cess. This simplification does not present a problem for an isolated intersection since this will be
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repaired during the execution. However, if operating in a network, such repairs might cause disrup-

tive changes due to the difference between planned and actual outflows. To ensure the feasibility,

the schedule is iteratively checked from the start time (13): If there is a violation time point, a cut is

performed on the job at the time point, and all jobs after the time point are rescheduled by SchIC.

Additionally, coordination mechanisms are included for handling nontrivial mis-coordinated

situations in the network. One common situation is the spillover that can occur due to insufficient

capacity on an road that will block traffic flow from its upstream neighbor. Severe spillover that

starts from some links can spread to a large area of a road network and eventually lead to “grid

lock”. For each intersection, a spillover prevention mechanism (13) is used to prevent a spillover

to its upstream neighbor in the next phase by deciding if the current phase should be terminated

earlier than planned, after evaluating the impact difference between the expected residual queue in

the current phase and the expected spillover vehicles in the next phase. If conditions warrant, the

downstream intersection sacrifices its own interest for the sake of its upstream neighbors.

SHORT-TERM TRAFFIC FLOW PREDICTION

For each intersection, an accurate view of the local inflows is essential to construct the scheduling

search space, since the non-local inflows are communicated from its neighbors.

Ideally, the local inflows can be directly obtained if the phase flow profiles are known,

as assumed in some exiting algorithms, e.g., COP (14). In a more practical setting where the

requesting phases of vehicles are not completely known, the local flows can be obtained through

a road-to-phase (RtoP) mapping (13), given the local link flow profiles and turning movement

proportions at intersection, where the latter can be estimated using classical models (8, 20).

Each local link flow profile describes the state of queuing and arriving vehicles in a high-

resolution prediction horizon (15). In practice, the main challenge is to achieve accurate short-term

estimation through limited detection available in the real world (5, 16).

Figure 2 shows the placement of detectors in a typical installation. Detector groups are used

for reporting two fundamental measures: traffic counts (passage) and occupancy time (presence)

of vehicles. For each entry link, a group of stop-bar detectors is placed near the intersection, and a

group of advance detectors is placed sufficiently far away from the intersection. For each exit link,

a group of exit detectors is placed near the intersection. In a network, the advance detectors are

normally adopted from the exit detectors of the upstream intersection, if they exist.

These detectors are compatible with the usages in existing traffic control systems (3).

FIGURE 2 The placement of detectors in a typical installation.
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Stop-bar detectors are used in vehicle-actuated operations, ACS-Lite, and SCATS. Far-side ad-

vance detectors (upstream exit detectors) are used by SCOOT, OPAC, ACS-Lite, and optionally by

RHODES.

For video detection, all of these detectors can be defined with no additional cost than

would be required to support the detection requirement for vehicle-actuated logic and other traffic-

responsive control techniques. For simplicity, we will not consider special cases where some

detectors might be removed (e.g., some exit counts might be estimated from stop-bar counts if the

corresponding turning proportions are known for some intersection types).

A short-term flow prediction normally combines sensed data and basic traffic models (5,

15, 18). On each road, all vehicles are moving at constant free-flow speed (v f ) when they are not

stopped. On each lane, a queue of vehicles is discharged in a green phase at the saturation headway

(shw) after the start-up lost time. These model parameters can be easily estimated from historical

flow data (8, 15).

The basic algorithm for obtaining a link flow profile is an input-output technique (15). The

predicted arrival time of each vehicle is shifted by the horizon L/v f , where L is the location of the

advance detectors. From time t0 to t1, the queue q is changed by the difference of the number of

predicted arrivals a and the number of departures d (8):

q(t1) = q(t0)+
t1

∑
t=t0

a(t)−
t1

∑
t=t0

d(t). (1)

This technique cannot detect queues beyond the advance detectors (5, 18, 21). In theory,

this does not cause a problem in schedule-driven traffic control, since non-local inflows can be

communicated from upstream neighbors. For boundary nodes (i.e., intersections without any up-

stream neighbors), longer queues might be estimated using shockwave theory (18). However, as

real-world uncertainties arise, this might not be effective since hidden information in a link flow

profile can be highly distorted from the actual.

STRENGTHENING IN THE REAL WORLD

It is natural to combine data from multiple sensors and prediction models to achieve improved ac-

curacies (22). In our context, we first extract features in current data, and then apply strengthening

strategies for special situations that are identified according to (combined) features.

Features

Features service as interfaces between raw information and robust control techniques, since dif-

ferent features can be used for identifying traffic flow states. In RHODES (8), stop-bar presence

information is used to confirm if there is a queue. In (23), phase status, detector occupancy, flow

rate, and elapsed green time are considered as input features for classifying three basic stop-bar

states. In (15), the difference between numbers of vehicle arrivals and departures is used for ad-

justing the queue, and a threshold headway is used for obtaining the queue clearance state. In (18),

the occupancy data at the advance detectors are used for identifying changes in traffic states.

For each entry link n, we have the link flow rates f rarr
n and f r

dep
n respectively from the

groups of advance and stop-bar detectors. We also obtain the flow rates f rn,i from the lane group

of the stop-bar detectors for each phase i. Each average flow rate is updated every 300 seconds.

For each entry link n, the arrival/departure ratio is

ADRation = f rarr
n / f rdep

n . (2)
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For phase i, the flow ratio for the critical lane group is

clgi = maxn( f rn,i · shw/ln,i), (3)

where ln,i is the number of involved lanes on the entry link n that are serviced in phase i.

The exit and advance spillover features SOexit
m and SOadv

n at each exit link m and entry link

n are respectively identified if the occupancy ratio on any exit and advance detectors is larger than

80% for tSO seconds. For each entry link n in phase i, the queue stalling and queue clearance

features QSn,i and QCn,i are respectively obtained if the occupancy ratios of all stop-bar detectors

in the corresponding lane group are 80% for tQS seconds and 0% for tQC seconds. Here By default,

tSO = tQS = 3 · shw, and tQC = 2 · shw.

Strengthening Strategies

For schedule-driven traffic control, strengthening strategies are proposed for handling real-world

situations, based on the features extracted from detection information.

The basic queue length calibration is realized as follows. For each entry link, the predicted

queue size q is a typical hidden state. A basic adjustment is q = max(0,q), and q = min(NSC,q),
where NSC is the link storage capacity (15). The queue size is also adjusted from the measured

features: q = NSC if SOadv and tQS are identified, as the link is not serviced; and q = 0 if QC

is obtained, and the link is serviced. The adjustment by spillover detection is especially impor-

tant for video detection under a high traffic volumes, where the count accuracy may deteriorate

substantially due to the difficulty in sensing gaps between vehicles.

Some properties can be obtained from these basic adjustments. If q is over-estimated, an

ideal full clearance will adjust q to 0. For each intersection, it costs extra tQC seconds. For its neigh-

bors, the estimation error imposes some uncertainty on weights and execution durations of jobs in

non-local inflows, and might cause some disturbance of the coordination between intersections.

From the viewpoint of robust scheduling, any over-estimation might be considered as a buffer in-

sertion (24), and SchIC with the rolling horizon scheme is essentially doing on-line rescheduling

that can effectively respond to such unexpected dynamics (25) and provide good stability guaran-

tees (26). If q is under-estimated, significant delay might occur from residue queues, and these

residue queues are not seen in the following one or more cycles. The situation might be signif-

icantly worse if the queue starts to spill back to upstream intersections. Thus under-estimation

should normally be avoided, although arriving vehicles in the look-ahead horizon might alleviate

most negative impacts on pure queue clearance, if the current phase might be further extended

according to arriving platoons in the prediction horizon.

The arrival-adjusting strategy is used to take account of the detection inaccuracy. As in

(15), we assume that the group of stop-bar detectors can yield a quite accurate estimation of depar-

ture vehicles. If ADRatio < 1, some arriving vehicles are missed, and the numbers of queuing and

arriving vehicles are under-estimated. Thus, when vehicles are detected at the advance detectors,

the count is divided by ADRatio to reclaim those missing vehicles in the link arrival profile.

The queue clearance management strategy contains two parts: “elastic” and “tolerance”.

The “elastic” part concerns the queue clearing time tQC. If tQC is too small, a queue might be

truncated. If tQC is too large, green time is regularly wasted. Thus, for tQC = rela
QC · shw, the elastic

ratio rela
QC is defined as a sigmoid function on the queue size q:

rela
QC = rL +(rU − rL)/(1+ exp(−1.5 ·q/l−6), (4)
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where rL and rU are lower and upper bounds. By default, rL = 1.5 and rU = 3.5. A long queue

size will have a large rela
QC, and thus is hardly be truncated.

Due to some real-world uncertainty, such as mid-road bus stopping, on-street parking, or

stop-bar mis-counting, a long queue might still be unexpectedly truncated and become a residue

queue. The “tolerance” part of queue clearance management is applied to avoid under-estimation.

The current queue is stored as q′, and is derived using Eq. 1 in the same way as q. Then q′ is

retrieved as q in the following NTOL cycles, where NTOL = 1 is the default tolerance size.

In a urban road network, spillover happens on some links from time to time. The spillover

reaction strategy is then applied. For an intersection at phase i, the spillover status might be

identified from QSn,i on some entry links and SOexit on some exit links. For the current phase,

the possible turning movements are identified. If the total flow proportion toward these exit roads

exceeds a threshold rSO, the signal will immediately switch to the next phase, and SchIC is applied

to recalculated the new schedule. By default, rSO=50% for having a reasonable reaction.

The major-flow management strategy determines if the major phase should be actually

terminated after SchIC makes the decision. The major phase is defined as the phase î that services

the maximum flow ∑n f rn,î. The main reason is to mitigate unexpected disturbance from pedestrian

calls, which are unknown to the current scheduler. For a minor phase, an unexpected pedestrian

call might significantly increase the minimal green time (e.g., 20 seconds), which might lead to

nontrivial inefficiency. Basically, there is a significant waste of green time allocation for the minor

phase. Furthermore, the traffic signal cannot switch back to the major phase on the scheduled

time. For an intersection with short entry links, this disturbance might cause spillover, and might

interrupt the scheduled queue clearance process by triggering the spillover reaction strategy of its

upstream intersections. In this strengthening strategy, the major phase will be continued, if each

entry link that are serviced in the other phases has the queue size lower than qT H . For responding

to the current major flow, qT H is defined as

qT H = ceil(clgî/0.05)∗ lî. (5)

For example, for the main phase î, if the critical lane group has 2 lanes, and the flow ratio

clgî is 0.15, then qTH = 6.

EXPERIMENTS

The performance of strengthening strategies for schedule-driven intersection control was evaluated

on a nine-intersection road network in the East Liberty neighborhood of Pittsburgh, PA, as shown in

Fig. 3. Although the total scale is not large, this road network has some interesting characteristics.

First, instead of a single arterial (as studied in most traditional systems (27, 28)), this network

contains a triangle, where three major streets cross (Penn Circle, Penn Avenue, and Highland

Avenue), with changing traffic flows throughout the day. Second, the road lengths are quite short

(ranging from 40.5 to 174.1 meters, as considering the speed limit is 11.18 meters/second), which

impose a nontrivial challenge for achieving effective coordination in a totally decentralized traffic

control system. Third, there are various uncertainty elements in an urban environment, e.g., bus

lines (on Penn Avenue and Highland Avenue), on-street parking (on all three major streets), hidden

flows from/to mid-block side streets (Baum Boulevard for Highland Avenue, Sheridan Avenue for

Penn Avenue and Penn Circle), and pedestrian calls (all intersections except for the intersection

of Penn Avenue and Highland Avenue). Finally, video detection is currently installed for sensing
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FIGURE 3 The nine-intersection pilot test site in the East Liberty neighborhood of Pitts-

burgh, PA.
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FIGURE 4 Hourly link arrival/departure ratios at the intersection of Penn Avenue and Penn

Circle.

vehicles. Fig. 4 gives the actual hourly ADRatio data in a day (from 6:00am to 22:00pm, Jul-

2-2012) for all entry links of the intersection of Penn Avenue and Penn Circle. This shows that

DARatio varied in a large range, where the fluctuations indicate a nontrivial unpredictable part.

The evaluation results are reported on simulation and actual pilot tests. We use a micro-

scopic road traffic simulator, Simulation of Urban Mobility (SUMO)1. Simulation is useful to

demonstrate trends for different parameter settings, but it is difficult to reproduce some kinds of

real-world uncertainties in SUMO. For pilot tests, the schedule-driven traffic control approach has

been integrated into SURTRAC (Scalable Urban TRAffic Control), which is currently running in

the road network. The travel information can be recorded using the Global Positioning System

(GPS) through floating vehicle runs. Pilot tests are more expensive than simulation.

For main parameters, the saturation headway is shw = 2 seconds/vehicle, the detection

1http://sumo.sourceforge.net
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FIGURE 5 Before and after results for the arrival-adjusting strategy.

TABLE 1 Pilot test results during the PM rush period

BASELINE SURTRAC0 SURTRAC1

Speed (m/s) 3.53 3.70 4.98% 4.48 26.94%

Travel Time (s) 144.38 140.66 2.58% 112.56 22.04%

Wait Time (s) 85.87 82.19 4.29% 55.65 35.19%

frequency is one second, and the minimal phase extension time is one second.

Fig. 5 gives the average vehicle speed results in simulation with and without the arrival-

adjusting strategy on different mis-counting ratios at the advance detectors, using the flow data in

the AM rush period. For each instance, we calculate the mean of 100 independent runs. Without

the arrival-adjusting strategy, the performance drops significant for increasing ratios of missing

counts. With the strengthening strategy, the performance can be restored to near optimal.

In the pilot tests, we compared three systems during the PM rush period, which is the

most congested time of day in this region. BASELINE is the original coordinated-actuated signal

control with timings optimized by Synchro 7.0 (a state-of-practice package based on traditional

offset calculation). SURTRAC0 and SURTRAC1 are two versions of our system; the former does

not include the queue clearance and major-flow management strategies.

All tests were performed between 5pm and 6pm. Each system was evaluated in three runs,

where each run contains twelve dominant routes. The relative volumes along different routes were

used to determine weights. BASELINE and SURTRAC runs were conducted in March and June

of 2012, respectively. An analysis of traffic data shows that volumes were essentially the same,

though slightly higher in June.

Table 1 gives the average performance of pilot test results and the percentage improvements

over BASELINE. SURTRAC0 achieved better results than BASELINE, and SURTRAC1 achieved

much better results. The improvements clearly demonstrate the advantage and necessity of using

strengthening strategies for schedule-driven traffic control, which might significantly enhance the

progress of large platoons crossing intersections in the road network.

CONCLUSIONS

In this paper, we have presented some strengthening strategies for schedule-driven traffic control.

These strategies are aimed at handling real-world uncertainties, based on the features extracted

from detection information. The effectiveness of these strategies was evaluated in simulations and
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in the context of a real-world pilot test. The overall results demonstrate that use of these tech-

niques does in fact enable effective real-time adaptive traffic control in urban road networks and

indicates the potential of decentralized, schedule-driven traffic control. Given the decentralized na-

ture of the approach, it is inherently scalable and expansion to incorporate additional intersections

is straightforward.

There are several aspects of the current system that warrant further study. First, the system

might gain more precise control given knowledge about bus arrivals and pedestrian calls. Second,

multi-sensor data fusion techniques, e.g., Kalman filter and Dempster-Shafer theory of evidence,

might be integrated for achieving more accurate flow prediction.
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