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Abstract: Device robust-design is inherently a multiple-objective optimization problem. Using design of experiments (DoE) combined with response 

surface methodology (RSM) can satisfy the great incentive to reduce the number of TCAD simulations that need to be performed. However, the errors of 

RSM models may large enough to diminish the validity of the results for some nonlinear problems. To find the feasible design space, a new method with 

objectives-oriented design in generations that taking the errors of RSM model into account is presented. After the augment design of experiments in 

promising space according to the results of RSM model in current generation, the feasible space will be emerging as the model errors deceasing. The 

results on FIBMOS examples show that the methodology is efficiently. 
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1. Introduction 
 
The technology CAD (TCAD) tools played a key role in the development of new technology generations.  For 

the deep sub-micrometer devices, these tools provide a better insight than any measurement techniques and have 
become indispensable in the new device creation [1]. Technology development, however, requires substantially 
more than a fundamental simulation capability: tools and methods to assist in exploration of design trade-offs and 
to optimize a design are becoming increasingly important [2-4]. 

Device robust-design is inherently a multiple-objective optimization problem because the designers always 
want to attain more than one objective at the same time [5]. In order to obtain a robust device, one should avoid 
optimizing the design with the consideration of one single objective only, because it usually leads to a device that is not operable 
with respect to other objectives. There is a great incentive to reduce the number of TCAD simulations that need to be 
performed. Vary one factor at a time is a very inefficient procedure for optimizing and in many cases the best 
combination of design parameters may not be determined. Using design of experiments (DoE) [6,7] combined with 
response surface methodology (RSM) [8, 9] is a strategy that can overcome these problems since it can examine 
the whole parameter space while at the same time minimizing the number of TCAD experiments. The initial step 
is to perform some computer based screening experiments that identify the key design parameters to reduce the 
number of design parameters to a more manageable number. Simulation experiments are then designed and 
simulated, the results of which are used to derive the response surfaces. 

There have some successful examples [10, 11] to design novel devices with DoE/RSM approach by predicting the 
tendency among parameters and responses. And some frameworks, such as in DoE/Opt [3], VISTA [4], etc., have 
integrated the RSM and optimization capability. However, the searched results by calling RSM model might not 
satisfy the multiple-objectives since there always have errors between the results of the simulator and its RSM 
model, even better model accuracy is achieved by a lot of methods [12-14]. 

In order to find the fully feasible design space that satisfies the multiple-objectives, a new method with objectives-
oriented design in generations that taking the errors of RSM model into account is presented. After the augment design in 
promising space according to the RSM model in last generations, the feasible space will emerge as the model errors deceasing 
successively. Then the method has been used to optimize the focused-ion-beam (FIB) MOSFET [15] successfully. 

 
2. Device robust-design with RSM 
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2.1 General representation for device design problems 
The device design problems can be defined as finding design points x ∈SD such that 
   fj ( x )∈[cl, j, cu, j],  j = 1,…, m               (1) 

Where x =(x1, …, xi, …, xn)T is a design point, x i represents a design parameter that specify the topography and impurity 
concentrations associated with a device, such as effective channel length, oxide thickness, doping profile descriptors, SD is a 
design space defined as a Cartesian product of domains of design parameters xi’s (xi ∈[li, ui], 1≤i≤n).  fj are real-valued function 
of specified device performance on SD, which defines the response (i.e. electrical behavior) of the device, such as on and off 
currents, threshold voltage, output resistance, etc. cl, j and cu, j specifies the desired objective for the jth response. If cl, j = cu, j or 
only have small difference, it represents an equality constraint objective. If cl, j = -∞ or cu, j = +∞, it represents an inequality 
constraint objective. In additional, the optimum requirements should be transformed into strong constraints objective to obtain 
robust devices with the process deviations for each device parameter. 

Definition 1: Each design points that satisfying all of the m constraints is denoted as feasible point. The set of feasible points is 
denoted as feasible space (SF). Since fj ( x ) are calculated by TCAD simulator at here, its feasible space is also denoted as SF, SIM. 

 
2.2 Design of experiments (DoE) 

The choice of an appropriate design of experiments is extremely important in determining the best model for multi-
characteristics. As TCAD codes become even more complex and computationally intensive, it becomes increasingly more 
important to reduce the number of TCAD simulations required. 

The value of statistically based experimental designs (the matrix of runs generated by specific combinations of design 
parameters in SD) has been well established for automatic generation of experiments [6, 7].  

The full-factorial design generates a uniform grid with user-specified density level m (totally mn points) covering the input 
parameter space. 

The Central composite designs are useful to explore the parameter space SD with a minimum of required experiments. For 
example, a central composite circumscribed (CCC) design consists of 2n axial points, 2n cube points (full-factorial with m=2) 
and one center point. The rotatability and the small number of necessary experiments make central composite designs very well 
suited for estimating the coefficients in a second-order model.  

The Latin hypercube sampling (LHS) [16] proposes the “uniform” design concept. It provides an orthogonal array that 
randomly samples the entire design space broken down into rn equal-probability regions (where r is the number of experiments). 
LHS can be looked upon as a stratified Monte Carlo sampling where the pairwise correlations can be minimized to a small value 
(which is essential for uncorrelated parameter estimates) or else set to a desired value. LHS is especially useful in exploring the 
interior of parameter space, and for limiting the experiment to a fixed (user specified) number of simulations. 

 
2.3 Response surface methodology (RSM) 

Response surface method [8, 9] is a kind of methodology, which generate mathematic model to describe the responses (device 
characteristics) in the space SD. An important role of response surface models is to “mimic” the more complex workings of 
TCAD simulations or experiments. The most widely used model functions are polynoms of second order [4] 
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The coefficients for this analytical function g( x ) can be calculated by a weighted least square estimation. For both inputs ( x ) 
and responses (g), transformations (e.g., log, exp, square, square root, inverse) can be specified so as to including the additional 
knowledge about the system behavior. The covariance of the estimates, a metric of model stability, is dependent on the input 
design matrix and the lack of model fit. Choice of the input design matrix is critical to determining the model coefficients, and 
minimizing the covariance between the estimates of the model coefficients. Scaling the inputs minimizes the correlation 
between the estimates of the coefficients of the model [17]. In additional, weighted regression is important: a common sequence is 
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to perform a broad experimental design, build a model, optimize to desired region within that model, and then refine the 
experimental design near that region. In such cases, it is useful to weight the second set of simulations more than the first to 
increase model accuracy in the region where the model will be most used. 

 
2.4 Objectives-oriented augment design by considering model errors 

Definition 2: The feasible space of all the gj ( x )∈[ cl, j + el, j, cu, j + eu, j] ( j = 1,…, m) is denoted as maximum potential space 
(SFmax, RSM). The feasible space of all the gj ( x )∈[ cl, j, cu, j] ( j = 1,…, m) is denoted as feasible space  of RSM model (SF, RSM). The 
feasible space of all the gj ( x )∈[ cl, j + eu, j, cu, j + el, j] ( j = 1,…, m) is denoted as minimum potential space (SFmin, RSM). 

When RSM model is utilized to find feasible design space, the absolute errors δj( x ) = gj( x )-fj( x ) must be taken into 
account since SF, RSM is not a subset of SF, SIM, as shown in Fig. 1. For worse cases, the intersection of SF, RSM and SF, SIM is small, 
even is empty when the δj( x ) is large enough. 

 

SFmax, RSM

SF, RSM

SFmin, RSM

SF, SIM

gj ( x )∈[ cl, j + el, j, cu, j + eu, j] 

gj ( x )∈[ cl, j, cu, j]

 fj ( x )∈[cl, j, cu, j] 

gj ( x )∈[ cl, j + eu, j, cu, j + el, j]

 
FIG. 1 A two-dimensional scheme for the relations of the feasible space in different conditions 

 
Property 1: Suppose for any x , δj( x ) ∈ [el, j, eu, j], where el, j and eu, j are the bound values for possible errors. Then for a given 

x , it is easy to be proved that 
 a) If gj( x ) ∉ [ cl, j + el, j, cu, j + eu, j], then fj( x ) ∉[ cl, j, cu, j]; 
 b) If cl, j + eu, j < cu, j + el, j, and if gj( x ) ∈ [ cl, j + eu, j, cu, j + el, j], then fj( x )∈[ cl, j, cu, j]. 
From property 1a), it is easy to know that SF, SIM∈SFmax, RSM; and from property 1b), it is easy to know that SFmin, RSM∈SF, SIM.  
The properties provide a methodology to find feasible points according to the response surface models, i.e. to find SFmin, RSM as 

feasible space instead of SF, SIM. However, SFmin, RSM may be empty as the range of errors [el, j, eu, j] is very large due to the highly 
nonlinear response space. Hence, the errors, especially in promising space for all the objectives, should be decreased. This will 
be done by iterative generations, just as in evolutionary computation technology. For each generation, the objectives-oriented 
augment design in the SFmax, RSM is performed for better accuracy of new RSM model, and potential spaces SFmin, RSM and SFmax, 

RSM are refreshed according to the new RSM model, as shown in Fig. 2. If SFmin, RSM is still empty, then perform next generation. 
 

Augment design
 in SFmax, RSM   for better
model accuracy

 
FIG. 2 Augment design in SFmax, RSM for better model accuracy to enlarge SFmin, RSM 

 
2.5 Total design flow 

The total design flow can be described as below: 
a)  Define design space SD and objectives; 
b)  Prepare the inputs for the DoE modules (SD and the specified design) and start the DoE program to create a DoE table; 
c)  Calculate the responses for all the designs in the DoE table by batched executions with TCAD simulator and store into a 
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persistent run database for all the experiments; 
d)  All responses that in specified design space are collected from the finished runs and added to the experiment table; 
e)  Evaluate the data in the experiment table to construct RSM models for all responses; 
f)  Calculate all the errors for the experiments and corresponding RSM calculation results to find the range of [el, j, eu, j]; 
g)  Find the maximum potential space SFmax, RSM and minimum potential space SFmin, RSM, according to the RSM model with 

the range of errors  [el, j, eu, j] and objectives in specified design space; 
h)  If SFmin, RSM exists, then output it as results; else screen the old design space with SFmax, RSM, return to b). 

 
3. Design cases and discussion 

 
The conception of device robust-design with response surface methodology will be demonstrated on a new-fashion focused-

ion-beam MOSFET [15], as shown in Fig. 4. Here most device parameters are fixed. The effective channel length is 0.35µm; the 
oxide thickness (Tox) is 0.01µm. For source and drain, the junction depth (Xj) is 0.1µm, doping (NSD) is 7.0E20cm-3. For the P+ 
implant in the channel, vertical distance (rp) is 0.0351µm, and vertical deviation (∆rp) is 0.0182µm. 

The design parameters include lateral implantation position that start from source side of channel (FIB-X), implantation dose 
(Dose), and substrate doping concentration (Nsub). The device responses includes drive current (Ion) and dynamic output 
conductance (Gout), at Vds=1.5V and Vgs=1.5V. For DoE in each generation, the full-factorial design with level=5 is used. A log 
transformation of responses is used to aid model fitting. A numerical device simulator PISCES-2ET [18] is used to calculate the 
device responses. 
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P-Substrate

P++

Tox
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FIG. 3 Parameterized representation for FIBMOS device 

 
 Ease case: Dose ∈[1E12, 2E13] (cm-2), Nsub∈[5E16, 1E18] (cm-3), when FIB-X=0.1µm; 

 Fig 4 shows perspective plots for a) Ion and b) Gout of simulated results and RSM model for different Dose and Nsub. Where 
the points are the simulation results in the whole design space, and the surface is the RSM model that fitted to 25 data points.  

2x1017

4x1017

6x1017

8x1017

1x1018

4.0x1012

8.0x1012

1.2x1013

1.6x1013

2.0x1013

1E-7

1E-6

1E-5

1E-4

N sub
 (c

m
-3 )

Dose (cm -2)

I on
 (A

/ µ
m

)

  

2x1017

4x1017

6x1017

8x1017

1x1018

4.0x1012

8.0x1012

1.2x1013

1.6x1013

2.0x1013

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

 

G
ou

t (S
)

Dose (cm -2)
N sub

 (c
m
-3 )

 
(a)           (b) 

FIG. 4 Perspective plots for a) Ion and b) Gout of simulated results and RSM model for different Dose and Nsub 
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It can be seen that the RSM model provides considerable precision. Fig 5 shows the isolines of the RSM model for Ion and 
Gout. Where the solid lines represent Ion and dash lines represent Gout. Notice both the response results are transformed by a log 
function. Since the isolines for Ion and Gout are not parallel to each other, lower Gout can be achieved at a fixed Ion if higher Dose 
and lower Nsub are used. Fig 6 shows an optimized result for that Ion = 2E-4A/µm (i.e. the isoline that equal to 3.7 in Fig 5). 
Where the dash line is a point with higher Nsub and lower Dose, and the solid line is an optimized solution with lower Gout. 
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FIG. 5 Response surfaces for log(Ion) and log (Gout) 
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FIG. 6 An optimization example by RSM for larger Gout 

 
Here the RSM model is utilized to find feasible design space, which the objectives for responses are set as Ion>1E-4A/µm (i.e. 

log(Ion)>-4), Gout<6.3E-6S(i.e. log(Gout)<-5.2). The range of response errors δj( x ) between the RSM model and the simulated 
results are [-0.10, 0.12] for log(Ion) and [-0.12, 0.17] for log(Gout). Fig. 7 shows the feasible space in different conditions, here the 
part of design space that Nsub>5E17 cm-3 is not shown in order to demonstrate more clearly. The solid lines, i.e. the isolines for 
log(Ion)= -4 and log(Gout)= -5.2 of the simulation results represent the boundary of SF, SIM, is used as reference. The dash lines, i.e. 
the isolines for log(Ion)= -4 and log(Gout)= -5.2 of the RSM model results represent the boundary of real SF, RSM. It can exactly to 
see that SF, RSM is not a subset of SF, SIM, which due to the errors between RSM and simulation results. 

Hence the model errors δj( x ) must be taken into account. As in Fig. 7, the dash dot lines, i.e. the isolines for log(Ion)= -4.10 
and log(Gout)= -5.03 of the RSM model represent the boundary of SFmax, RSM, and the dot lines, i.e. the isolines for log(Ion) = -3.88 
and log(Gout)= -5.32 of the RSM model represent the boundary of SFmin, RSM. Here SFmin, RSM is a subset of SF, SIM, and then robust 
design points can be selected in this region. For example, as a design point A in SFmin, RSM, which with Nsub =5E16cm-3 and Dose 
=1.7E13cm-2, then we have responses as Ion =1.44E-4A/µm, Gout =3.96E-6S. 
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FIG. 7 The feasible space in different conditions for the objective that Ion>1E-4A/µm and Gout<6.3E-6S 
 

 Hard case: Dose ∈[1E12, 2E13] (cm-2), FIB-X ∈[0.05, 0.30] (µm), when Nsub =0.1cm-3; 
Fig 8 shows perspective plots for a) Ion and b) Gout of simulated results and RSM model for different Dose and FIB-X. Where 

the points are the simulation results in the whole design space, and the surface is the RSM model that fitted to 25 data points. 
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FIG. 8 Perspective plots for a) Ion and b) Gout of simulated results and RSM model l for different Dose and FIB-X 
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FIG. 9 The feasible space in different conditions for the objective that Ion>1E-4A/µm and Gout<3.16E-6S 

 
Here the RSM model is utilized to find feasible design space, which the objectives for responses are set as Ion>1E-4A/µm (i.e. 

log(Ion)>-4), Gout<3.16E-6S(i.e. log(Gout)<-5.5). The range of response errors δj( x ) between the RSM model and the simulated 
results are [-0.09, 0.12] for log(Ion) and [-0.19, 0.23] for log(Gout). Fig. 9a) shows the feasible space of RSM in different 
conditions that takes the model errors into account. The dash lines, i.e. the isolines for log(Ion)= -4 and log(Gout)= -5.5 of the 
RSM model represent the boundary of real SF, RSM. The dash dot lines, i.e. the isolines for log(Ion)= -4.09 and log(Gout)= -5.27 of 
the RSM model represent the boundary of SFmax, RSM. However, in this case, the dot lines, i.e. the isolines for log(Ion)= -3.88 and 
log(Gout)= -5.69 of the RSM model cannot construct the set SFmin, RSM with feasible design points since cl, j + eu, j > cu, j + el, j, 
according to property 1b). 

In order to find feasible design space, the augment design should be performed in SFmax, RSM for better model accuracy. Here 
the design space is decreased to Dose∈[1.2E13, 2E13] (cm-2) and FIB-X ∈[0.05, 0.225] (µm). Then new generation is started 
with a full-factorial design with level=5. The range of errors δj( x ) between the RSM model and the simulated results are [-0.04, 
0.03] for log(Ion) and [-0.09, 0.07] for log(Gout). Fig. 9b) shows the feasible space of new RSM model in this design space in 
different conditions. The solid lines, i.e. the isolines for log(Ion)= -4 and log(Gout)= -5.5 of the simulation results represent the 
boundary of SF, SIM, and the dot lines, i.e. the isolines for log(Ion)= -3.97 and log(Gout)= -5.59 of the RSM model results represent 
the boundary of SFmin, RSM. It can be found that the enhanced RSM model accuracy by the augment design in SFmax, RSM induces 
that (cl, j + eu, j) to be less than (cu, j + el, j), and SFmin, RSM which is a subset of SF, SIM is not empty now. As a point B in SFmin, RSM, 
which with FIB-X=0.075µm and Dose =1.8E13cm-2, then we have responses as Ion =1.12E-4A/µm, Gout =2.32E-6S. 
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4. Conclusion 
 
This paper has shown how response surface methodology combined with TCAD simulation can be used in the device robust-

design, i.e. find the feasible space that satisfies multi-objectives, by considering model errors. The fully feasible space SFmin, RSM 
which is a subset of real feasible space SF, SIM will emerge by successively accelerated enhancing the model accuracy in 
promising space according to the objectives-oriented augmented design in maximum potential space SFmax, RSM of last generation. 

Future work is needed to employ new methods that enhance the accuracy of RSM model, since better model accuracy makes 
for finding SFmin, RSM. 
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