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Abstract   - A dissipative particle swarm optimization is 

developed according to the self-organization of dissipative 

structure. The negative entropy is introduced to construct an 

opening dissipative system that is far-from-equilibrium so as to 

driving the irreversible evolution process with better fitness. 

The testing of two multimodal functions indicates it improves 

the performance effectively. 

 

1. Introduction 

 Particle swarm optimization (PSO) is an evolutionary 

computation technique developed by Kennedy and Eberhart 

in 1995 [1, 2]. The underlying motivation for the 

development of PSO algorithm was social behavior of 

animals such as bird flocking, fish schooling, and swarm 

theory [3]. One of reasons that PSO is attractive is that there 

are very few parameters to adjust. Work presented in [4, 5] 

describes the complex task of parameter selection in the 

PSO model. Several researchers have analyzed the 

performance of the PSO with different settings, e.g., 

neighborhood settings [6], cluster analysis [7], etc. It has 

been used for approaches that can be used across a wide 

range of applications [8]. 

 However, studies by Angeline [9] showed that although 

PSO discovered reasonable quality solutions much faster 

than other evolutionary algorithms, it did not possess the 

ability to improve upon the quality of the solutions as the 

number of generations was increased. This indicates 

although the current simple social model in PSO suggests 

the irreversible process toward higher fitness by the weak 

selection that recording best historical experience, it is 

lacking of enough capability to “sustainable development” 

(i.e. get better fitness as evolution process goes on). 

 Understanding the emergence and evolution of biological 

and social order has been a fundamental goal of evolutionary 

theory. Current rapid development of methods of complex 

systems dynamics [10-13] argue that order can only be 

maintained by self-organization . Structures of increasing 

complexity in open systems based on energy exchanges with 

the environment were developed into a general 

thermodynamic concept of dissipative structures  by 

Prigogine [10]. With the selection that providing the 

direction of evolution, the self-organization of dissipative 

systems interprets the general phenomenon of a 

nonequilibrium system evolving to an order state as a result 

of fluctuations.  

 Self-organizing dissipative systems allow adaptation to 

the prevailing environment, i.e. they react to changes in the 

environment with a thermodynamic response which makes 

the systems extraordinarily flexible and robust against 

perturbation of the outer conditions. An entirely new 

technology will have to be developed to tap the high 

guidance and regulation potential of self-organizing systems 

for technical processes. The superiority of self-organizing 

systems is illustrated by biological and social systems where 

complex products can be formed with unsurpassed accuracy, 

efficiency and speed.  

 This paper describes a variant of particle swarm, termed 

dissipative PSO, which introduces negative entropy to 

stimu late the model in PSO operating as a dissipative 

structure. Both standard and dissipative versions are 

compared on two multimodal optimization problems 

typically used in evolutionary optimization research. The 

results show that the additional fluctuations supply some 

advantage to particle swarm on “sustainable development”.  

2. Standard particle swarm optimization (SPSO) 

 The fundament to the development of PSO is a hypothesis 

[14] that social sharing of information among conspeciates 

offers an evolutionary advantage. PSO is similar to the other 
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evolutionary algorithms in that the system is initialized with 

a population of random solutions. However, each potential 

solution is also assigned a randomized velocity, and the 

potential solutions, call particles , corresponding to 

individuals. Each particle in PSO flies in the D-dimensional 

problem space with a velocity which is dynamically adjusted 

according to the flying experiences of its own and its 

colleagues. The location of the ith particle is represented as 
Xi = (xi1,… ,  xid, …, xiD), where xid∈[ld, ud], d∈[1, D], ld, ud 

are the lower and upper bounds for the dth dimension, 

respectively. The best previous position (which giving the 

best fitness value) of the ith particle is recorded and 

represented as Pi = (pi1,…, pid, …, piD), which is also called 

pbest. The index of the best particle among all the particles 

in the population is represented by the symbol g. The 

location Pg is also called gbest. The velocity for the ith 

particle is represented as Vi = (vi1,… , vid, …, v iD), is clamped 

to a maximum velocity Vmax = (vmax,1,… , vmax,d , …, vmax,D), 

which is specified by the user. 

 The particle swarm optimization concept consists of, at 

each time step, changing the velocity and location of each 

particle toward its pbest and gbest locations according to the 

equations (1a) and (1b), respectively: 

  vid = w * vid + c1 * rand() * (pid -xid)  

    + c2 * rand() * (pgd -xid)         (1a) 

  xid = xid + v id               (1b) 

Where w is inertia weight [15], c1 and c2 are acceleration 

constants [8], and rand() is a random function in the range 

[0, 1]. For equation (1a), the first part represents the inertia 

of pervious velocity; the second part is the “cognition” part, 

which represents the private thinking by itself; the third part 

is the “social” part, which represents the cooperation among 

the particles [16]. If the sum of accelerations would cause 

the velocity vid on that dimension to exceed vmax,d, then vid is 

limited to vmax,d . Vmax determines the resolution with which 

regions between the present position and the target position 

are searched [4, 8]. 

 The process for implementing PSO is as follows: 

a).Initialize a population (array) which including m 

particles, For the ith particle, it has random location Xi in the 

problem space and for the dth dimension of velocity Vi, vid = 

Rand2() * vmax,d , where  Rand2() is in the range [-1, 1];  

b). Evaluate the desired optimization fitness function for 

each particle; 

c).Compare the evaluated fitness value of each particle 

with its pbest . If current value is better than pbest, then set 

the current location as the pbest location.  Furthermore, if 

current value is better than gbest, then reset gbest to the 

current index in particle array; 

d). Change the velocity and location of the particle 

according to the equations (1a) and (1b), respectively;  

e).Loop to step b) until a stop criterion is met, usually a 

sufficiently good fitness value or a predefined maximum 

number of generations Gmax. 

 The parameters of standard PSO includes: number of 

particles m, inertia weight w, acceleration constants c1 and c2, 

maximum velocity Vmax. 

3. Dissipative particle swarm optimization (DPSO) 

3.1 Self-organization of dissipative structures 

 Three realms of thermodynamics are differentiated by 

Prigogine [10, 12]. In equilibrium realm, it has maximal 

entropy. Close to equilibrium realm, where the rates of 

processes are linear functions of the underlying forces, 

systems evolve toward a stationary equilibrium state 

characterized by the minimum of entropy production 

compatible with the boundary conditions. In the third, far-

from-equilibrium realm of thermodynamics, with the 

nonlinearity of flows and forces, system leaves the unstable 

state and evolves to one of the many possible new states. 

These new states can be highly organized states. The 

features of far-from-equilibrium systems imply that initial 

conditions and random fluctuations may have a permanent 

effect on the system’s development. Since the creation of 

organized nonequilibrium states are due to dissipative 

processes, they are called dissipative structures. 

 The self-organization of dissipative structure is frequently 

used as a generic dynamic concept to describe the evolution 

of nonlinear systems [11, 12, 17]. Often, such applications 

do not even refer to the thermodynamic foundations, but far-

from-equilibrium conditions are taken for granted as a 

prerequisite for developing increasingly complex structures 

in evolutionary processes. 
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 Moreover, self-organization requires a system consisting 

of multiple elements in which nonlinear relations of 

feedback between system elements are present [13, 17]. 

Positive feedback is necessary for the amplifying of random 

fluctuations so as to drive the dissipative system into an 

order state distinguishable from the random configuration of 

thermodynamic equilibrium. In order to maintain the order 

state, some negative feedback is also present that dampen 

the effects of further fluctuations. Self-organization thus 

results from interplay of positive and negative feedback, 

which of these is actually realized depends on random 

fluctuations. Therefore, system development is permanently 

affected by random fluctuations. Accordingly, the Prigogine 

school refers to the self-organization of dissipative systems 

as “order through fluctuations” [11, 12]. 

 With the spatiotemporal symmetry broking by selection 

for higher fitness, the self-organization of dissipative 

structure provides the inevitability of the general 

phenomenon of increasingly complex structures in a 

nonequilibrium system out of chanciness. 

3.2 Social model in standard PSO 

 The simple social model in standard PSO has some 

characteristics for self-organization of dissipative structure. 

The selection of keeping best historical experience 

constructs the irreversible process toward higher fitness. 

Then the process starts as the initialization of particles with 

random locations and velocities bring the system far-from-

equilibrium. The randomicity of fluctuations is provided by 

the rand() function for the acceleration constants. The 

“social” part of equation (1a) ensures non-linear relations of 

positive and negative feedback between particles according 

to the cooperation and challenge with the particle with best 

experience so far. 

 However, these characteristics that similar to dissipative 

structure may be faded as evolution process goes on.  

 Firstly, as the function of successive negative feedback by 

imitating the best particle among all the particles (gbest), the 

best historical experience of every particle (pbest) are apt to 

be similarly, which means the “social” part is tend to be 

ineffective, and the swarm is inclined to be decomposed as 

independent particles which lost nonlinear relations of 

feedback between particles. 

 Secondly, the swarm may be damped to equilibrium state. 

In order to solve different problems, the concept of inertia 

weight w  was introduced by Shi [15] to satisfy the 

requirements for different balances between the local search 

ability and global search ability, i.e. to be in equilibrium or 

in chaos. Since the chaotic state should be avoided to 

accelerate the evolution process, the small or time 

decreasing w is usually adopted [4], which will diminish the 

diversity of swarm and lead to equilibrium. 

 For an extreme case, if the particles have same locations, 

same pbests, and all in zero velocities at certain evolution 

stage (for example, initialization stage), then the swarm is in 

stationary equilibrium with no possibility to evolution. 

3.3 Dissipative particle swarm optimization 

 If the swarm is going to be in equilibrium, the evolution 

process will be stagnated as time goes on. To prevent the 

trend, an opening dissipative system DPSO is constructed by 

introduces negative entropy through additional chaos for 

particles, with the following equations (2a) and (2b) that is 

executed after equation (1) in the step d) of SPSO.  

 The chaos for velocity of particle is represented as: 

  IF (rand() < cv)  THEN  vid = rand()*vmax,d   (2a) 

 The chaos for location of particle is represented as: 

  IF (rand() < cl)  THEN  xid = Random(ld, ud)  (2b) 

Where cv and cl are chaotic factors that in the range [0, 1], 

When Random(ld, ud) is a random value between ld and ud. 

 As in an opening system, the flying of a particle is not 

only referring to the historical experiences, but also effected 

by environment. The chaos introduces the negative entropy 

from outer environment, which will keep the system in far-

from-equilibrium state. Then the self-organization of 

dissipative structure comes into being with the inherent 

nonlinear interactions in swarm and leads to “sustainable 

development” fro m the fluctuations. 

 This dissipative PSO model can be mapping into human 

social creative activity for exploring new knowledge. People 

accept new information from the environment frequently 

and get rid of general experiences consciously, found fresh 

knowledge space which is far from old and general one, 
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carry through various nonlinear information sharing and 

competition among social members, so that new rudiment of 

thinking info will appear and be magnified, new knowledge 

then comes into being. 

4. Experimental setting 

 In order to test the capability of the dissipative PSO to 

“sustainable development”, two multimodal functions that 

are commonly used in the evolutionary computation 

literature [5, 9] are used. Both functions are designed to 

have minima at the origin. 

 The function f1 is the generalized Rastrigrin function: 
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 For dth dimension, xmax,d=10 for f1; xmax,d =600 for f2. For 
both functions, the initialization range xd∈[-xmax,d, xmax,d] (for 

equation (2b), xid = Random(-xmax,d , xmax,d )), maximum 

velocity  vmax,d=xmax,d . Acceleration constants c1 =c2=2. The 

fitness value is set as function value. For all the figures that 

mentioned, the number of particles m is fixed at 20. We had 

500 trial runs for every instance. 

5. Results and discussion 

 Figure 1, 2 and figure 3, 4 shows the mean fitness value of 

the best particle found with different w, cv and cl for the 

Rastrigrin and Griewank function, respectively. Where 

cv=cl=0, i.e. no additional negative entropy, means the 

standard PSO version, inertia weights w are varied from 0 to 

1, cv and cl are set as 0.001 and 0.002 for one parameter and 

as 0 for another parameter to test different status, Gmax is set 

as 1000 and 1500 generations corresponding to the 

dimensions 10 and 20, respectively. 

 By looking at the shape of curves in these figures, it is 

easy to see a “balance point” for SPSO, i.e. a value of w 

with best mean fitness, which indicating a balance between 

the local and global search ability. When the w is larger than 

the balance value, the SPSO is going to be in chaotic state 

which lacking of local search ability. There has almost no 

difference for the performance between the standard and the 

dissipative PSO version. When the w is less than the balance 

value, the SPSO is apt to be in equilibrium state which 

lacking of global search ability. With the introduced 

negative entropy, both cases of the dissipative PSO version 

show excellent performance than the standard PSO version. 

Moreover, the chaos for location seems more effective than 

for velocity since it introduces large fluctuations, and is not 

affected by the value of inertia weight directly. 

 In addition, for standard PSO, it can be found an 

interesting phenomenon that is not according with the 

original anticipation [15] of decreasing performance with 

decreasing global search ability when w is decreasing to zero, 

which indicates some unclear mechanisms may exists in the 

variation of w that should be studied in the future. 

 In order to investigate whether the dissipative PSO scales 

well or not, different numbers of particles m are used for 

each function which different dimensions. The numbers of 

particles m are 20, 40, 80 and 160. Gmax is set as 1000, 1500 

and 2000 generations corresponding to the dimensions 10, 

20 and 30, respectively. Table 1 gives the additional test 

conditions, where SF0 is the results by Shi and Eberhart [5] 

with an asymmetric initialization method and a linearly 

decreasing w which from 0.9 to 0.4. SF1 provides a 

transitional comparison to SF0 as a symmetric initialization 

in this work. DF2 and DF3 are DPSO with cv=0, cl=0.001, 

and the w of DF3 is fixed at 0.4.  

 Table 2 and 3 lists the mean fitness value of the best 

particle found for the Rastrigrin and Griewank function, 

respectively. 

 The little difference of the results between SF0 and SF 

verifies that PSO were only slightly affected by the 

asymmetric initialization [9]. With same setting with 

linearly decreasing w, DF2 is superior to SF0 for Rastrigrin 

function, and is similar to SF0 for Griewank function. 

However, for DF3, which w is fixed as 0.4, it shows 

overwhelming superiority to SF0 for Rastrigrin function, and 

is also superior to SF0 in most cases for Griewank function. 

The results suggest the performance can be improved by 

introduce negative entropy into the dissipative system as w 

is small. 
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FIG. 1 10-D Rastrigrin function with different cv and cl 

 
 
 

 

 

 

 

 

 

FIG. 2 20-D Rastrigrin function with different cv and cl 

 

 

 

 

 

 

 

 
 

FIG. 3 10-D Griewank function with different cv and cl 

 

 

 

 

 

 

 

 
 

FIG. 4 20-D Griewank function with different cv and cl 

 

 

TABLE 1: Test conditions for standard and dissipative PSO 

Type SF0[5] SF1 DF2 DF3 
PSO version SPSO SPSO DPSO DPSO  
Initialization asymmetric symmetric symmetric symmetric 

Inertia weight 0.9 to 0.4 0.9 to 0.4 0.9 to 0.4  0.4  

 
TABLE 2: The mean fitness values for the Rastrigrin function 

m Dim. Gmax SF0[5] SF1 DF2 DF3 
10 1000 5.5572 5.20620 3.08128 0.47068 

20 1500 22.8892 22.77236 13.85226 2.57289 20 

30 2000 47.2941 49.29417 33.11479 7.32582 
10 1000 3.5623 3.56974 1.62999 0.07619 
20 1500 16.3504 17.29751 10.37524 1.30880 40 

30 2000 38.5250 38.91423 24.8981 6.21067 
10 1000 2.5379 2.38352 0.71879 0.00796 

20 1500 13.4263 12.90195 7.25417 0.74955 80 

30 2000 29.3063 30.03748 19.31247 4.22646 
10 1000 1.4943 1.44181 0.22699 0.00199 

20 1500 10.3696 10.04382 5.19949 0.20298 160 

30 2000 24.0864 24.51050 15.33264 2.91272 

 
TABLE 3: The mean fitness values for the Griewank function 

m Dim. Gmax SF0[5] SF1 DF2 DF3 
10 1000  0.0919 0.09609 0.08937 0.06506 
20 1500  0.0303 0.02856 0.02863 0.02215 20 
30 2000  0.0182 0.01506 0.01562 0.01793 
10 1000  0.0862 0.08622 0.08170 0.05673 
20 1500  0.0286 0.02868 0.03085 0.02150 40 
30 2000  0.0127 0.01348 0.01252 0.01356 

10 1000  0.0760 0.07669 0.06767 0.05266 
20 1500  0.0288 0.03109 0.02766 0.02029 80 

30 2000  0.0128 0.01374 0.01345 0.01190 
10 1000  0.0628 0.06373 0.06246 0.05047 
20 1500  0.0300 0.03041 0.03145 0.01940 160 
30 2000  0.0127 0.01321 0.01260 0.01029 

 

 Figure 5 and 6 shows the mean fitness value of the best 

particle found during 1500 generations with different w and 

cl for the Rastrigrin and Griewank function with 20 

dimensions, respectively. cv is fixed as zero. cl are set as 0 

(SPSO) or 0.001 (DPSO). The inertia weights are fixed as 

0.4 or linearly decreasing from 0.9 to 0.4, respectively. 

 For the Rastrigrin function, it can be seen that the 

performance of DPSO is similar to SPSO during the early 

stage, however, it will sustainable evolving when the 

evolution of SPSO is almost stagnated. For the Griewank 

function, this tendency is weakly but is also exists. For both 

functions, when w=0.4, the performance of the SPSO is the 

worst; while of the DPSO is the best. 
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FIG. 5 20-D Rastrigrin function with different w and cl 

 

 

 

 

 

 

 

 

 

FIG. 6 20-D Griewank function with different w and cl 

6. Conclusion 

 Self-organizing has shown extraordinarily flexible and 

robust in nature systems. By introducing negative entropy 

into the simple social model of standard PSO through 

additional chaos, a reasonable open system is constructed, 

which is in far-from-equilibrium state. With the internal 

nonlinear interactions among particles, the self-organization 

of dissipative structure comes into being with the dissipative 

processes for the introduced negative entropy, which drives 

the irreversible evolution process toward higher fitness by 

the selection of keeping best experience. The testing of two 

multimodal benchmark functions that are commonly used in 

the evolutionary computation literature indicates the 

dissipative PSO can improve the performance efficiently. 
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