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Abstract- A self-organizing particle swarm is presented. It 
works in dissipative state by employing the small inertia 
weight, according to experimental analysis on a simplified 
model, which with fast convergence. Then by recognizing and 
replacing inactive particles according to the process 
deviation information of device parameters, the fluctuation is 
introduced so as to driving the irreversible evolution process 
with better fitness. The testing on benchmark functions and 
an application example for device optimization with designed 
fitness function indicates it improves the performance 
effectively. 

I.  INTRODUCTION 

From the deep sub-micrometer to nanoscale devices, 
the technology CAD (TCAD) tools provide a better 
insight than measurement techniques and have become 
indispensable in the new device creation [4]. Technology 
development, however, requires substantially more than 
fundamental simulation capability: tools and methods to 
assist in exploration of design trade-offs and to optimize a 
design, are becoming increasingly important [6]. 

As the first step in technology synthesis [6, 8], device 
optimization problem is to finding some feasible device 
designables in the design space (S) in order to satisfying 
the requirements on the device electrical performance. 
Each device designable x = 1( ,..., ,..., )d Dx x x ∈ S is a 
possible combination of device parameters (xd) that 
specify the device topography and channel impurity 
concentrations associated with a semiconductor device. 
Typical device designables are physical gate length, oxide 
thickness, etc. The D-dimensional design space (S) is a 
Cartesian product of domains of device parameters. 
Device performance is evaluated from the electrical 
responses of the device. Examples are on and off currents, 
threshold voltage, output resistance, etc. for MOS devices. 

For short channel MOS devices, the response surfaces 
of device performance are often highly nonlinearly. For 
scaled devices, such surfaces can be even highly rugged 
due to the disturbance from the mesh adjustment of device 
simulations, such as PISCES [22]. Moreover, the highly 
sophisticated novel semiconductor devices involve many 
design parameters, which increase the dimension of design 
space. For handling with such complex cases, the global 
search techniques, such as genetic algorithm (GA) [10], 
particle swarm optimization (PSO) [5, 7], etc., had been 
employed in a modeling and optimization system [21] for 
finding the feasible devices. 

The number of evaluation times is crucially for device 
optimization since each device simulation is time-
consumptively. As a novel stochastic algorithm, PSO [5, 7] 
is inspired by social behavior of swarms. Studies [1] 
showed that although PSO discovered reasonable quality 
solutions much faster than other evolutionary algorithms 
(EAs), however, it did not possess the ability to improve 
upon the quality of the solutions as evolution goes on. 

Structures of increasing complexity in self-organizing 
dissipative systems based on energy exchanges with the 
environment were developed into a general concept of 
dissipative structures (DS) by Prigogine [10, 12], which 
allows adaptation to the prevailing environment with 
extraordinarily flexible and robust. The self-organization 
of DS was implemented in a dissipative PSO (DPSO) 
model [19] with some good results. However, the DPSO 
model also introduces additional control parameters to be 
adjusted by hand, which cannot be very easily determined. 

In this paper, the particle swarm is worked in 
dissipative state with the control parameters according to 
the experimental convergence analysis results from a 
simplified model. Instead of introducing additional 
parameters, the process deviations of device parameters 
are employed for recognizing inactive particles. Then the 
negative entropy is introduced to stimulate the model of 
PSO operating as a DS, which is realized by replacing 
inactive particles with fresh particles. The variant of 
particle swarm, termed self-organizing PSO (SOPSO), 
removes the additional parameters. The performance of 
the self-organizing PSO is studied on three benchmark 
functions and an application for a Focused-Ion-Beamed 
MOSFET (FIBMOS) [13] with designed fitness function, 
by comparing with some existing algorithms [9, 14, 19]. 

II.  PARTICLE SWARM OPTIMIZATION 

In particle swarm, The location of the ith (1 i N≤ ≤ , 
i∈ ) particle is a potential solution in S represented as 

ix = 1( ,..., ,..., )i id iDx x x . The best previous position (with 
the best fitness value) of the ith particle is recorded and 
represented as ip =(pi1,…, pid, …, piD), which is also 
called pbest. The index of the best pbest among all the 
particles is represented by the symbol g. The p g (or g ) 
is also called gbest. The velocity for the ith particle is 

iv =(vi1,…, vid, …, viD). At each time step, the ith particle 
is manipulated according to the following equations [14]: 
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vid=w·vid+c1·U ()·(pid-xid)+c2·U ()·(gd-xid)   (1a) 
xid=xid+vid               (1b) 

where w is inertia weight, c1 and c2 are acceleration 
constants, U () are random values between 0 and 1. 

III.  EXPERIMENTAL CONVERGENCE ANALYSIS 

The convergence analysis can be done on a single 
dimension without loss of generality since there is no 
interaction between the different dimensions in equations 
(1), so that the subscript d is dropped. And the analysis is 
simplified even more for a single particle, then the 
subscript i is dropped, i.e., 

 v=w·v+c1·U ()·(p-x)+c2·U ()·(g-x)      (2a) 
 x=x+v                (2b) 
Here just consider a special case |p-g|→0, which can be 

encountered by every particle. By transforming the 
coordinate origin to g, i.e. p≈g=0, equation (2a) can be 
simplified as: 

 v=w·v-C·x               (3) 
where C=(c1·U ()+c2·U ()). 

Several researchers have analyzed theoretically for the 
cases when C is fixed [2, 16, 17]. However, it still has 
great difficulty to analyze the cases when C is 
stochastically varied. Without loss of generality, here we 
suppose the g is in a local minimum, i.e. is not changed in 
the following generations. Fig. 1 gives the average log(|x|) 
value of 1E6 experimental trails in 100 generations, where 
log() is the logarithmic operator, the initial x(0)

 = U (), the 
initial v(0)

 = U (), c1=c2=2. Besides, a special setting that 
in constriction factor (CF) [2] is also demostrated in Fig.1 
as a dash line, which with w=0.729 and c1=c2=1.494. Here 
it can be seen that the average log(|x|) varied linearly as 
generation t is increasing. Besides, the CF version lies 
between w=0.6~0.8 (about 0.65) in the normal version. 
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Figure 1.  The average log(|x|) for different w in 100 generations. 

 
Fig. 2 gives the average log(|x|) for different w in T=100 

generations. The swarm is in chaotic state when w>wth, 

and be dissipative state when 0 thw w≤ ≤ , here wth is 
about equal to 0.85. Of course, for real swarm, such 
threshold value should be decreased slightly since 
normally p ≠ g at the initial time. The value of w that 
provides balance between exploitation and exploration is 
lower than the wth, which is about 0.5~0.75 [11, 19], since 
the performance of swarm decreases when it be too 
dissipative or be too chaos. Moreover, it can be seen there 
has a higher tail when w is closed to zero, which is agreed 
with the increasing fitness at the tail of the experimental 
results [19] for Rastrigrin and Griewank functions. 
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Figure 2.  The average log(|x|) for different w at T=100. 

IV.  SELF-ORGANIZING PARTICLE SWARM 

To converge fast with considerable performance, a self-
organizing PSO (SOPSO) based on the principle of DS is 
presented, as shown in Fig. 3. 

 

 
Figure 3.  Principle of self-organizing PSO: performing as a DS. 

 
Firstly, as a prerequisite of DS [10, 12], small w, which 

is much less than wth, is adopted to induce the dissipative 
processes into the particle swarm, i.e. to reduce the 
average energy of swarm during evolution according to 
the nonlinear interactions among particles. 

Secondly, the self-organization requires a system 
consisting of multiple elements in which nonlinear 
interactions between system elements are present [10]. In 
PSO, the equation (1) ensures nonlinear relations of 
positive and negative feedback between particles 



according to the cooperation and competition with the 
particle with best experience so far. 

Thirdly, far-from-equilibrium conditions should be 
taken for granted [12]. As time goes on, some particles 
become inactive [20] when they are similar to the gbest 
and lost their velocities, which lost both of the global and 
local search capability in the next generations. Since the 
inactive particle has less contribution on evolution results, 
it suggests an adaptive mechanism to introduce negative 
entropy as following: recognize and replace it. 

Taking the problem information into account can 
improve the algorithm performance [18]. For each device, 
there exists process deviation dσ for each parameter xd. 
For a given point o , its similar set Ss is defined as all the 
points within the range of the deviations. Then for 

sSx∈∀ , which |xd-od| dσ≤  come into existence in all 

dimensions, is noted as x ≅ o , i.e. x  is similar to o . 
Then a particle can be identified as inactive if it is always 
flying in Ss of p g and without any improvement on its 
fitness in the following Tc generations. 

The pseudo code for recognizing inactive particle is 
shown in Fig. 4, which is executed after equations (1). 
The SC array is employed to store the times that are 
similar to the gbest in successively for each particle. Tc is 
a predefined constant. It need not be too large since the 
swarm dynamics is dissipative. According to our 
experience, Tc=2 is good enough. 

 
IF ( ix g≅ && i!=g)  // similar to the gbest? 

  THEN SC[i] ++;  // increase 1 

ELSE SC[i] = 0;   // reset to 0 

IF (SC[i]>Tc)   // achieve predefined count?

  THEN the ith particle is inactive; 
 

Figure 4. Pseudo code for recognizing an inactive particle. 

 
If the ith particle is recognized as inactive, then it is 

replaced by a fresh particle, which the location ix  and iv  
is reinitialized at random, and SC[i] is reset to 0. 

V.  FITNESS FUNCTION DESIGN 

Typical requirements on device responses are classified 
in two classes of objectives: 

0
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where f and g are response functions calculated by 
device simulator. The number of functions in MIN type 
often are normally 0 or 1 [8, 21].  The set of points, 
which satisfying all functions gk in CON type, is denoted 
as feasible space (SF). 

The total fitness function ( )F x  is defined as: 
( ) ( ), ( )OBJ CONF x F x F x=< >         (5) 
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respectively, where wj are positive weight constants, 
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used for normalizing the large differences in the 
magnitude of the constraint values for device performance. 

In order to avoid the difficulty to adjusting penalty 
coefficient in penalty function methods [9], the fitness 
evaluation is realized by directly comparison between any 
two points Ax , Bx , i.e. ( ) ( ) A BF x F x≤  when 

  
( ) ( )  OR
( ) ( ),  ( ) ( )

CON A CON B

OBJ A OBJ B CON A CON B

F x F x
F x F x F x F x

<
 ≤ =

   (7) 

If CONF =0, then Fx S∈ . It is also following the Deb’s 
criteria [3]: a) any Fx S∈  is preferred to any Fx S∉ ; b) 
among two feasible solutions, the one having better OBJF  
is preferred; c) among two infeasible solutions, the one 
having smaller CONF  is preferred. 

The device simulator may also be failed to calculate the 
responses for some designables when meets with 
inappropriate mesh settings. Then for such wrong cases, 

OBJF = CONF =+∞. 

VI.  RESULTS AND DISCUSSION 

A. Benchmark functions 
 

For comparison, three unconstrained benchmark 
functions that are commonly used in the evolutionary 
computation literature [14] are used. It can be done loss of 
generality, since the ( )F x of constrained function can be 
seemed as a uncostrained function. All functions have 
same minimum value, which are equal to zero. 

The function f1 is the Rosenbrock function: 
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The function f2 is the generalized Rastrigrin function: 
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The function f3 is the generalized Griewank function: 
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For dth dimension, xmax,d=100 for f1, xmax,d=10 for f2; 
xmax,d=600 for f3. Acceleration constants c1=c2=2. The 
fitness value is set as function value. We had 500 trial 
runs for every instance. 

Table 1 lists the initialization ranges. Table 2 gives the 
additional test conditions. FPSO give the results of fuzzy 
adaptive PSO [14]. DPSO give the results of PSO version 
in, which cv=0, cl=0.001 [19]. For SOPSO, w=0.4, and 
σd=0.01 for the dth dimension of all functions. In order to 
investigate whether the SOPSO scales well or not, 
different numbers of particles (N) are used for each 
function which different dimensions. The numbers of 
particles N are 20, 40 and 80. The maximum generations T 
is set as 1000, 1500 and 2000 generations corresponding 
to the dimensions 10, 20 and 30, respectively.  

 
TABLE 1. INITIALIZATION RANGES 

Function Asymmetric Symmetric 
f1 (15,30) (-100, 100) 
f2 (2.56,5.12) (-10,10) 
f3 (300,600) (-600,600) 

 
TABLE 2. TEST CONDITIONS FOR DIFFERENT PSO VERSIONS 
PSO Type FPSO [14] DPSO [19] SOPSO 

Initialization Asymmetric Symmetric Symmetric 
w Fuzzy 0.4 0.4 

 
TABLE 3. THE MEAN FITNESS VALUES FOR THE ROSENBROCK 

FUNCTION 

N D T FPSO [14] DPSO SOPSO 
10 1000 66.01409 35.7352 21.7764

20 1500 108.2865 78.5368 47.1619
20 

30 2000 183.8037 132.1512 72.1907

10 1000 48.76523 17.0553 13.4052

20 1500 63.88408 43.8963 29.2476
 40 

30 2000 175.0093 82.7209 52.2661

10 1000 15.81645 17.7516 11.9570

20 1500 45.99998 32.2961 26.5855
80 

30 2000 124.4184 57.2802 46.9986

 
TABLE 4. THE MEAN FITNESS VALUES FOR THE RASTRIGRIN 

FUNCTION 

N D T FPSO [14] DPSO[19] SOPSO
10 1000 4.955165 0.4707 1.0079

20 1500 23.27334 2.5729 6.8493
20 

30 2000 48.47555 7.3258 17.7011

10 1000 3.283368 0.0762 0.1576

20 1500 15.04448 1.3088 3.2670
40 

30 2000 35.20146 6.2107 9.5294

10 1000 2.328207 0.0080 0.0086

20 1500 10.86099 0.7496 1.3517
80 

30 2000 22.52393 4.2265 4.9781

 

TABLE 5.  THE MEAN FITNESS VALUES FOR THE GRIEWANK 
FUNCTION 

N D T FPSO [14] DPSO[19] SOPSO
10 1000 0.091623 0.06506 0.06100

20 1500 0.027275 0.02215 0.02365
20

30 2000 0.02156 0.01793 0.02326

10 1000 0.075674 0.05673 0.05251

20 1500 0.031232 0.02150 0.01783
40

30 2000 0.012198 0.01356 0.01271

10 1000 0.068323 0.05266 0.04659

20 1500 0.025956 0.02029 0.01932
80

30 2000 0.014945 0.01190 0.01034

 
Table 3 to 5 lists the mean fitness values for three 

functions. It is easy to see that SOPSO have better results 
than FPSO [14] for almost all cases. By compare it with 
the results of DPSO [15], SOPSO also performs better for 
all the cases of Rosenbrock function, and better than most 
cases of Griewank function slightly, although it performs 
worse for the cases of Rastrigrin function. 

B. Device Optimization Example 
 
The performance of SOPSO was also demonstrated on 

a double-implantation focused-ion-beam MOSFETs [13, 
21], as shown in Fig. 5. A device simulator PISCES-2ET 
[22] is used to calculate the device characteristics. Here 
most parameters are fixed. The effective channel length 
(Leff) is 0.25µm; the oxide thickness (Tox) is 0.01µm. For 
source and drain, the junction depth (Xj) is 0.1µm, doping 
concentration (NSD) is 7.0E20cm-3. For both of the P+ 
implant peaks in the channel, there have same implant 
energy as 10keV. 
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Figure 5. Schematic of  0.25µm double-implantation MOS device. 

 
TABLE 6. DEVICE SEARCH SPACE AND PARAMETER PRECISIONS 

Name Min Max σ Unit 
X1 0.00 0.25 2.5E-4 µm 
Dose1 1E10 1E13 1E10 cm-2 
X2 0.00 0.25 2.5E-4 µm 
Dose2 1E10 1E13 1E10 cm-2 
Nsub 1E15 1E18 1E15 cm-3 

 
The design parameters include lateral implantation 

position that start from source side of channel for peak 1 



(X1) and 2 (X2), implantation dose in peak 1 (Dose1) and 2 
(Dose2), and substrate doping concentration (Nsub). Table 
6 lists the lower and upper boundary value and the 
precision σ  for each parameter, which includes almost 
all the possible implantation states in the device channel. 

Table 7 lists the objectives, which includes drive 
current (Ion) and output conductance (Gout) at Vds=1.5V, 
Vgs=1.5V; and off current (Ioff) at Vds=1.5V and Vgs=0V. 
 

TABLE 7. OBJECTIVES: DESIRED DEVICE PERFORMANCE 
Name Objective Unit 

Ion maximize A/µm 
Ioff ≤ 1E-14 A/µm 
Gout ≤ 8E-6 1/Ω 

 
Several algorithm settings are tested. GENOCOP is a 

real-value genetic algorithm (GA) with multiply genetic 
operators [9], which had applied for optimizing device 
successfully [8, 21]. Here its population size is set as 
Npop=50. For each generation, it has Nc=10~12 children 
individuals, the selection pressure q=0.01. For standard 
PSO, w are fixed as 1 [7], 0.4, and a linearly decreasing w 
which from 0.9 to 0.4 [14], respectively. For SOPSO, w is 
fixed as 0.4. The number of particles N=10 for all the PSO 
versions. We had 20 trial runs for every instance. 
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Figure 6. Relative mean fitness F∆ of device optimization results. 

 
Fig. 6 shows the relative mean performance F∆=|Fopt-

FB| during 100 generations for different algorithms. Where 
FB is the mean fitness value of the best particle found in 
current generation that found by algorithm, and 
Fopt=1.16411E-4A/µm is the optimum value for Ion when 
satisfying the constraints on Ioff and Gout. For all the PSO 
versions, the total evaluation times is Te=1000, which is a 
little less than that of GENOCOP (about 1050~1250). It 
shows that the original PSO version with w=1 [7], 
performed worst in all cases since it is worked in chaotic 
state. However, all the other PSO versions perform better 
than GENOCOP. The PSO version with w=0.4 converged 
fastly and stagnated at the last stage of evolution, since it 
is worked in dissipative state. The  PSO version with a 

linearly decreasing w which from 0.9 to 0.4 performed 
better than the PSO version with w=0.4 at last which 
converged slowly at the early stage while fastly at the last 
stage,. Moreover, the SOPSO performed as the best in all 
cases, which evolving sustainable when the evolution of 
PSO with same w is going to be stagnated. In addition, 
SOPSO costed only 24 generations to achieve the 
performance of GENOCOP, and only 46 generations to 
achieve the performance of PSO with w =0.4. 

VII.  CONCLUSION 

In this paper, a self-organizing PSO was presented by 
simulating the self-organization. The particle swarm is 
worked in dissipative condition by employing a small w, 
based on experimental analysis for a simplified model, 
which with fast convergence. Then the negative entropy is 
introduced, which is realized by recognizing and replacing 
inactive particles according to the existing information of 
the problem, i.e. the process deviations of device 
parameters, so as to driving the irreversible evolution 
process with better fitness, while removes the additional 
control parameters. 

The testing of three benchmark functions indicates the 
SOPSO has good performance. Then the testing results on 
a FIBMOS device illustrate that the SOPSO has fast 
optimization capability from the early searching stage, 
which is crucially for device optimization since each 
evaluation by device simulation is time-consumption. 
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