
Optimizing Semiconductor Devices by
Self-organizing Particle Swarm

Xiao-Feng Xie
Institute of Microelectronics,

Tsinghua University,
Beijing 100084, P. R. China

Email:xiexf@ieee.org

Wen-Jun Zhang
Institute of Microelectronics,

Tsinghua University,
Beijing 100084, P. R. China
Email: zwj@tsinghua.edu.cn

De-Chun Bi

Department of Environmental Engineering,
Liaoning University of Petroleum

& Chemical Technology
Fushun, Liaoning, 113008, P. R. China

Abstract- A self-organizing particle swarm is presented. It
works in dissipative state by employing the small inertia
weight, according to experimental analysis on a simplified
model, which with fast convergence. Then by recognizing and
replacing inactive particles according to the process
deviation information of device parameters, the fluctuation is
introduced so as to driving the irreversible evolution process
with better fitness. The testing on benchmark functions and
an application example for device optimization with designed
fitness function indicates it improves the performance
effectively.

I. INTRODUCTION

From the deep sub-micrometer to nanoscale devices,
the technology CAD (TCAD) tools provide a better
insight than measurement techniques and have become
indispensable in the new device creation [4]. Technology
development, however, requires substantially more than
fundamental simulation capability: tools and methods to
assist in exploration of design trade-offs and to optimize a
design, are becoming increasingly important [6].

As the first step in technology synthesis [6, 8], device
optimization problem is to finding some feasible device
designables in the design space (S) in order to satisfying
the requirements on the device electrical performance.
Each device designable x = 1(,..., ,...,)d Dx x x ∈ S is a
possible combination of device parameters (xd) that
specify the device topography and channel impurity
concentrations associated with a semiconductor device.
Typical device designables are physical gate length, oxide
thickness, etc. The D-dimensional design space (S) is a
Cartesian product of domains of device parameters.
Device performance is evaluated from the electrical
responses of the device. Examples are on and off currents,
threshold voltage, output resistance, etc. for MOS devices.

For short channel MOS devices, the response surfaces
of device performance are often highly nonlinearly. For
scaled devices, such surfaces can be even highly rugged
due to the disturbance from the mesh adjustment of device
simulations, such as PISCES [22]. Moreover, the highly
sophisticated novel semiconductor devices involve many
design parameters, which increase the dimension of design
space. For handling with such complex cases, the global
search techniques, such as genetic algorithm (GA) [10],
particle swarm optimization (PSO) [5, 7], etc., had been
employed in a modeling and optimization system [21] for
finding the feasible devices.

The number of evaluation times is crucially for device
optimization since each device simulation is time-
consumptively. As a novel stochastic algorithm, PSO [5, 7]
is inspired by social behavior of swarms. Studies [1]
showed that although PSO discovered reasonable quality
solutions much faster than other evolutionary algorithms
(EAs), however, it did not possess the ability to improve
upon the quality of the solutions as evolution goes on.

Structures of increasing complexity in self-organizing
dissipative systems based on energy exchanges with the
environment were developed into a general concept of
dissipative structures (DS) by Prigogine [10, 12], which
allows adaptation to the prevailing environment with
extraordinarily flexible and robust. The self-organization
of DS was implemented in a dissipative PSO (DPSO)
model [19] with some good results. However, the DPSO
model also introduces additional control parameters to be
adjusted by hand, which cannot be very easily determined.

In this paper, the particle swarm is worked in
dissipative state with the control parameters according to
the experimental convergence analysis results from a
simplified model. Instead of introducing additional
parameters, the process deviations of device parameters
are employed for recognizing inactive particles. Then the
negative entropy is introduced to stimulate the model of
PSO operating as a DS, which is realized by replacing
inactive particles with fresh particles. The variant of
particle swarm, termed self-organizing PSO (SOPSO),
removes the additional parameters. The performance of
the self-organizing PSO is studied on three benchmark
functions and an application for a Focused-Ion-Beamed
MOSFET (FIBMOS) [13] with designed fitness function,
by comparing with some existing algorithms [9, 14, 19].

II. PARTICLE SWARM OPTIMIZATION

In particle swarm, The location of the ith (1 i N≤ ≤ ,
i∈) particle is a potential solution in S represented as

ix = 1(,..., ,...,)i id iDx x x . The best previous position (with
the best fitness value) of the ith particle is recorded and
represented as ip =(pi1,…, pid, …, piD), which is also
called pbest. The index of the best pbest among all the
particles is represented by the symbol g. The p g (or g)
is also called gbest. The velocity for the ith particle is

iv =(vi1,…, vid, …, viD). At each time step, the ith particle
is manipulated according to the following equations [14]:

Congress on Evolutionary Computation (CEC), Portland, OR, USA, 2004: 2017-2022

[Cooperative Group Optimization] http://www.wiomax.com/optimization

vid=w·vid+c1·U ()·(pid-xid)+c2·U ()·(gd-xid) (1a)
xid=xid+vid (1b)

where w is inertia weight, c1 and c2 are acceleration
constants, U () are random values between 0 and 1.

III. EXPERIMENTAL CONVERGENCE ANALYSIS

The convergence analysis can be done on a single
dimension without loss of generality since there is no
interaction between the different dimensions in equations
(1), so that the subscript d is dropped. And the analysis is
simplified even more for a single particle, then the
subscript i is dropped, i.e.,

 v=w·v+c1·U ()·(p-x)+c2·U ()·(g-x) (2a)
 x=x+v (2b)
Here just consider a special case |p-g|→0, which can be

encountered by every particle. By transforming the
coordinate origin to g, i.e. p≈g=0, equation (2a) can be
simplified as:

 v=w·v-C·x (3)
where C=(c1·U ()+c2·U ()).

Several researchers have analyzed theoretically for the
cases when C is fixed [2, 16, 17]. However, it still has
great difficulty to analyze the cases when C is
stochastically varied. Without loss of generality, here we
suppose the g is in a local minimum, i.e. is not changed in
the following generations. Fig. 1 gives the average log(|x|)
value of 1E6 experimental trails in 100 generations, where
log() is the logarithmic operator, the initial x(0)

 = U (), the
initial v(0)

 = U (), c1=c2=2. Besides, a special setting that
in constriction factor (CF) [2] is also demostrated in Fig.1
as a dash line, which with w=0.729 and c1=c2=1.494. Here
it can be seen that the average log(|x|) varied linearly as
generation t is increasing. Besides, the CF version lies
between w=0.6~0.8 (about 0.65) in the normal version.

0 20 40 60 80 100

-32

-24

-16

-8

0

8

CF

0.2

0.0
0.4

0.6

0.8

w=1.0

lo
g(

|x
|)

t

Figure 1. The average log(|x|) for different w in 100 generations.

Fig. 2 gives the average log(|x|) for different w in T=100

generations. The swarm is in chaotic state when w>wth,

and be dissipative state when 0 thw w≤ ≤ , here wth is
about equal to 0.85. Of course, for real swarm, such
threshold value should be decreased slightly since
normally p ≠ g at the initial time. The value of w that
provides balance between exploitation and exploration is
lower than the wth, which is about 0.5~0.75 [11, 19], since
the performance of swarm decreases when it be too
dissipative or be too chaos. Moreover, it can be seen there
has a higher tail when w is closed to zero, which is agreed
with the increasing fitness at the tail of the experimental
results [19] for Rastrigrin and Griewank functions.

0.0 0.2 0.4 0.6 0.8 1.0
-40

-30

-20

-10

0

10

wth

lo
g(

|x|
)

w

T=100

Figure 2. The average log(|x|) for different w at T=100.

IV. SELF-ORGANIZING PARTICLE SWARM

To converge fast with considerable performance, a self-
organizing PSO (SOPSO) based on the principle of DS is
presented, as shown in Fig. 3.

Figure 3. Principle of self-organizing PSO: performing as a DS.

Firstly, as a prerequisite of DS [10, 12], small w, which

is much less than wth, is adopted to induce the dissipative
processes into the particle swarm, i.e. to reduce the
average energy of swarm during evolution according to
the nonlinear interactions among particles.

Secondly, the self-organization requires a system
consisting of multiple elements in which nonlinear
interactions between system elements are present [10]. In
PSO, the equation (1) ensures nonlinear relations of
positive and negative feedback between particles

according to the cooperation and competition with the
particle with best experience so far.

Thirdly, far-from-equilibrium conditions should be
taken for granted [12]. As time goes on, some particles
become inactive [20] when they are similar to the gbest
and lost their velocities, which lost both of the global and
local search capability in the next generations. Since the
inactive particle has less contribution on evolution results,
it suggests an adaptive mechanism to introduce negative
entropy as following: recognize and replace it.

Taking the problem information into account can
improve the algorithm performance [18]. For each device,
there exists process deviation dσ for each parameter xd.
For a given point o , its similar set Ss is defined as all the
points within the range of the deviations. Then for

sSx∈∀ , which |xd-od| dσ≤ come into existence in all

dimensions, is noted as x ≅ o , i.e. x is similar to o .
Then a particle can be identified as inactive if it is always
flying in Ss of p g and without any improvement on its
fitness in the following Tc generations.

The pseudo code for recognizing inactive particle is
shown in Fig. 4, which is executed after equations (1).
The SC array is employed to store the times that are
similar to the gbest in successively for each particle. Tc is
a predefined constant. It need not be too large since the
swarm dynamics is dissipative. According to our
experience, Tc=2 is good enough.

IF (ix g≅ && i!=g) // similar to the gbest?

 THEN SC[i] ++; // increase 1

ELSE SC[i] = 0; // reset to 0

IF (SC[i]>Tc) // achieve predefined count?

 THEN the ith particle is inactive;

Figure 4. Pseudo code for recognizing an inactive particle.

If the ith particle is recognized as inactive, then it is

replaced by a fresh particle, which the location ix and iv
is reinitialized at random, and SC[i] is reset to 0.

V. FITNESS FUNCTION DESIGN

Typical requirements on device responses are classified
in two classes of objectives:

0

, , 0

minimize : (), for [1,] (MIN type)

() [,], for [1,] (CON type)
j

k l k u k

f x j m

g x c c k m m

∈
 ∈ ∈ +

(4)

where f and g are response functions calculated by
device simulator. The number of functions in MIN type
often are normally 0 or 1 [8, 21]. The set of points,
which satisfying all functions gk in CON type, is denoted
as feasible space (SF).

The total fitness function ()F x is defined as:
() (), ()OBJ CONF x F x F x=< > (5)

where
0

1
() ()

m

OBJ j j
j

F x w f x
=

= ∑ and
0 1

() ()
m

CON k
k m

F x G x
= +

= ∑ are

the fitness functions for objectives and constraints,
respectively, where wj are positive weight constants,
which default values are equal to 1, and

, ,

, ,

,,

0 () [,]
() (()) ()

 ()(())

k l k u k

k l k k k k l k

k u kk u k k

g x c c
G x c g x A g x c

g x cg x c B

 ∈


= − <
 >−

 (6)

where , ,

,

| | 0
1 0

l k l k
k

l k

c c
A

c
≠=  =

 and , ,

,

| | 0
1 0

u k u k
k

u k

c c
B

c
≠=  =

 are

used for normalizing the large differences in the
magnitude of the constraint values for device performance.

In order to avoid the difficulty to adjusting penalty
coefficient in penalty function methods [9], the fitness
evaluation is realized by directly comparison between any
two points Ax , Bx , i.e. () () A BF x F x≤ when

() () OR
() (), () ()

CON A CON B

OBJ A OBJ B CON A CON B

F x F x
F x F x F x F x

<
 ≤ =

 (7)

If CONF =0, then Fx S∈ . It is also following the Deb’s
criteria [3]: a) any Fx S∈ is preferred to any Fx S∉ ; b)
among two feasible solutions, the one having better OBJF
is preferred; c) among two infeasible solutions, the one
having smaller CONF is preferred.

The device simulator may also be failed to calculate the
responses for some designables when meets with
inappropriate mesh settings. Then for such wrong cases,

OBJF = CONF =+∞.

VI. RESULTS AND DISCUSSION

A. Benchmark functions

For comparison, three unconstrained benchmark
functions that are commonly used in the evolutionary
computation literature [14] are used. It can be done loss of
generality, since the ()F x of constrained function can be
seemed as a uncostrained function. All functions have
same minimum value, which are equal to zero.

The function f1 is the Rosenbrock function:

1 2 2 2

1 1
1

() (100() (1))
D

d d d
d

f x x x x
−

+
=

= − + −∑ (8a)

The function f2 is the generalized Rastrigrin function:

 2
2

1
() (10cos(2) 10)

D

d d
d

f x x xπ
=

= − +∑ (8b)

The function f3 is the generalized Griewank function:

 2
3

1 1

1() cos 1
4000

DD
d

d
d d

xf x x
d= =

 
= − +∑ ∏  

 
 (8c)

For dth dimension, xmax,d=100 for f1, xmax,d=10 for f2;
xmax,d=600 for f3. Acceleration constants c1=c2=2. The
fitness value is set as function value. We had 500 trial
runs for every instance.

Table 1 lists the initialization ranges. Table 2 gives the
additional test conditions. FPSO give the results of fuzzy
adaptive PSO [14]. DPSO give the results of PSO version
in, which cv=0, cl=0.001 [19]. For SOPSO, w=0.4, and
σd=0.01 for the dth dimension of all functions. In order to
investigate whether the SOPSO scales well or not,
different numbers of particles (N) are used for each
function which different dimensions. The numbers of
particles N are 20, 40 and 80. The maximum generations T
is set as 1000, 1500 and 2000 generations corresponding
to the dimensions 10, 20 and 30, respectively.

TABLE 1. INITIALIZATION RANGES

Function Asymmetric Symmetric
f1 (15,30) (-100, 100)
f2 (2.56,5.12) (-10,10)
f3 (300,600) (-600,600)

TABLE 2. TEST CONDITIONS FOR DIFFERENT PSO VERSIONS
PSO Type FPSO [14] DPSO [19] SOPSO

Initialization Asymmetric Symmetric Symmetric
w Fuzzy 0.4 0.4

TABLE 3. THE MEAN FITNESS VALUES FOR THE ROSENBROCK

FUNCTION

N D T FPSO [14] DPSO SOPSO
10 1000 66.01409 35.7352 21.7764

20 1500 108.2865 78.5368 47.1619
20

30 2000 183.8037 132.1512 72.1907

10 1000 48.76523 17.0553 13.4052

20 1500 63.88408 43.8963 29.2476
 40

30 2000 175.0093 82.7209 52.2661

10 1000 15.81645 17.7516 11.9570

20 1500 45.99998 32.2961 26.5855
80

30 2000 124.4184 57.2802 46.9986

TABLE 4. THE MEAN FITNESS VALUES FOR THE RASTRIGRIN

FUNCTION

N D T FPSO [14] DPSO[19] SOPSO
10 1000 4.955165 0.4707 1.0079

20 1500 23.27334 2.5729 6.8493
20

30 2000 48.47555 7.3258 17.7011

10 1000 3.283368 0.0762 0.1576

20 1500 15.04448 1.3088 3.2670
40

30 2000 35.20146 6.2107 9.5294

10 1000 2.328207 0.0080 0.0086

20 1500 10.86099 0.7496 1.3517
80

30 2000 22.52393 4.2265 4.9781

TABLE 5. THE MEAN FITNESS VALUES FOR THE GRIEWANK
FUNCTION

N D T FPSO [14] DPSO[19] SOPSO
10 1000 0.091623 0.06506 0.06100

20 1500 0.027275 0.02215 0.02365
20

30 2000 0.02156 0.01793 0.02326

10 1000 0.075674 0.05673 0.05251

20 1500 0.031232 0.02150 0.01783
40

30 2000 0.012198 0.01356 0.01271

10 1000 0.068323 0.05266 0.04659

20 1500 0.025956 0.02029 0.01932
80

30 2000 0.014945 0.01190 0.01034

Table 3 to 5 lists the mean fitness values for three

functions. It is easy to see that SOPSO have better results
than FPSO [14] for almost all cases. By compare it with
the results of DPSO [15], SOPSO also performs better for
all the cases of Rosenbrock function, and better than most
cases of Griewank function slightly, although it performs
worse for the cases of Rastrigrin function.

B. Device Optimization Example

The performance of SOPSO was also demonstrated on

a double-implantation focused-ion-beam MOSFETs [13,
21], as shown in Fig. 5. A device simulator PISCES-2ET
[22] is used to calculate the device characteristics. Here
most parameters are fixed. The effective channel length
(Leff) is 0.25µm; the oxide thickness (Tox) is 0.01µm. For
source and drain, the junction depth (Xj) is 0.1µm, doping
concentration (NSD) is 7.0E20cm-3. For both of the P+
implant peaks in the channel, there have same implant
energy as 10keV.

SUBSTRATE

SOURCE DRAINGATE

Nsub

P+

Tox

X1

0

Leff

0.25 XjN+ N+

X2

Peak 1 Peak 2Dose1
Dose2

P+

Figure 5. Schematic of 0.25µm double-implantation MOS device.

TABLE 6. DEVICE SEARCH SPACE AND PARAMETER PRECISIONS

Name Min Max σ Unit
X1 0.00 0.25 2.5E-4 µm
Dose1 1E10 1E13 1E10 cm-2
X2 0.00 0.25 2.5E-4 µm
Dose2 1E10 1E13 1E10 cm-2
Nsub 1E15 1E18 1E15 cm-3

The design parameters include lateral implantation

position that start from source side of channel for peak 1

(X1) and 2 (X2), implantation dose in peak 1 (Dose1) and 2
(Dose2), and substrate doping concentration (Nsub). Table
6 lists the lower and upper boundary value and the
precision σ for each parameter, which includes almost
all the possible implantation states in the device channel.

Table 7 lists the objectives, which includes drive
current (Ion) and output conductance (Gout) at Vds=1.5V,
Vgs=1.5V; and off current (Ioff) at Vds=1.5V and Vgs=0V.

TABLE 7. OBJECTIVES: DESIRED DEVICE PERFORMANCE
Name Objective Unit

Ion maximize A/µm
Ioff ≤ 1E-14 A/µm
Gout ≤ 8E-6 1/Ω

Several algorithm settings are tested. GENOCOP is a

real-value genetic algorithm (GA) with multiply genetic
operators [9], which had applied for optimizing device
successfully [8, 21]. Here its population size is set as
Npop=50. For each generation, it has Nc=10~12 children
individuals, the selection pressure q=0.01. For standard
PSO, w are fixed as 1 [7], 0.4, and a linearly decreasing w
which from 0.9 to 0.4 [14], respectively. For SOPSO, w is
fixed as 0.4. The number of particles N=10 for all the PSO
versions. We had 20 trial runs for every instance.

0 20 40 60 80 100
1E-6

1E-5

Ion,max=1.16411E-4(A/µm)

F ∆

t (generations)

 GENOCOP
 PSO: w = 1
 PSO: w = 0.9->0.4
 PSO: w = 0.4
 SOPSO: w = 0.4

Figure 6. Relative mean fitness F∆ of device optimization results.

Fig. 6 shows the relative mean performance F∆=|Fopt-

FB| during 100 generations for different algorithms. Where
FB is the mean fitness value of the best particle found in
current generation that found by algorithm, and
Fopt=1.16411E-4A/µm is the optimum value for Ion when
satisfying the constraints on Ioff and Gout. For all the PSO
versions, the total evaluation times is Te=1000, which is a
little less than that of GENOCOP (about 1050~1250). It
shows that the original PSO version with w=1 [7],
performed worst in all cases since it is worked in chaotic
state. However, all the other PSO versions perform better
than GENOCOP. The PSO version with w=0.4 converged
fastly and stagnated at the last stage of evolution, since it
is worked in dissipative state. The PSO version with a

linearly decreasing w which from 0.9 to 0.4 performed
better than the PSO version with w=0.4 at last which
converged slowly at the early stage while fastly at the last
stage,. Moreover, the SOPSO performed as the best in all
cases, which evolving sustainable when the evolution of
PSO with same w is going to be stagnated. In addition,
SOPSO costed only 24 generations to achieve the
performance of GENOCOP, and only 46 generations to
achieve the performance of PSO with w =0.4.

VII. CONCLUSION

In this paper, a self-organizing PSO was presented by
simulating the self-organization. The particle swarm is
worked in dissipative condition by employing a small w,
based on experimental analysis for a simplified model,
which with fast convergence. Then the negative entropy is
introduced, which is realized by recognizing and replacing
inactive particles according to the existing information of
the problem, i.e. the process deviations of device
parameters, so as to driving the irreversible evolution
process with better fitness, while removes the additional
control parameters.

The testing of three benchmark functions indicates the
SOPSO has good performance. Then the testing results on
a FIBMOS device illustrate that the SOPSO has fast
optimization capability from the early searching stage,
which is crucially for device optimization since each
evaluation by device simulation is time-consumption.

REFERENCES

[1] Angeline P J. Evolutionary optimization versus particle
swarm optimization: philosophy and performance difference.
Annual Conf. on Evolutionary Programming, San Diego,
CA, USA, 1998: 601-610

[2] Clerc M, Kennedy J. The particle swarm - explosion,
stability, and convergence in a multidimensional complex
space. IEEE Trans. Evolutionary Computation, 2002, 6(1):
58-73

[3] Deb K. An efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and
Engineering, 2000, 186(2-4): 311-338

[4] Dutton R W, Strojwas A J. Perspectives on technology and
technology-driven CAD. IEEE Trans. Computer-aided
Design of Integrated Circuits and Systems, 2000, 19(12):
1544-1560

[5] Eberhart R C, Kennedy J. A new optimizer using particle
swarm theory. Int. Symposium on Micro Machine and
Human Science, Nagoya, Japan, 1995: 39-43

[6] Hosack H H, Mozumder P K, and Pollack G P. Recent
advances in process synthesis for semi-conductor devices.
IEEE Trans. Electron Devices, 1998, 45 (3): 626 – 633

[7] Kennedy J, Eberhart R. Particle swarm optimization. Proc.
IEEE Int. Conf. on Neural Networks, Perth, Australia, 1995:
1942-1948

[8] Li Z, Xie X F, Zhang W J, et al. Realization of
semiconductor device synthesis with the parallel genetic
algorithm. Asia and South Pacific Design Automation
Conference, Yokohama, Japan, 2001: 45-49

[9] Michalewicz Z. Genetic algorithms + Data structures =
Evolution programs, Springer-Verlag, Berlin, 1994

[10] Nicolis G, Prigogine I. Self-organization in nonequilibrium
systems: from dissipative systems to order through
fluctuations, John Wiley, New York, 1977

[11] Parsopoulos K E, Vrahatis M N. Recent approaches to
global optimization problems through particle swarm
optimization. Natural Computing, 2002 (1): 235-306

[12] Prigogine I. Introduction to thermodynamics of irreversible
processes. John Wiley, New York, 1967

[13] Shen C C, Murguia J, Goldsman N, et al. Use of focused-
ion-beam and modeling to optimize submicron MOSFET
characteristics. IEEE Trans. Electron Devices, 1998, 45(2):
453-459

[14] Shi Y H, Eberhart R C. Empirical study of particle swarm
optimization. Congress on Evolutionary Computation,
Washington DC, USA, 1999: 1945-1950

[15] Shi Y H, Eberhart R C. Fuzzy adaptive particle swarm
optimization, IEEE Int. Conf. on Evolutionary Computation,
Seoul, Korea, 2001: 101-106

[16] Trelea I C. The particle swarm optimization algorithm:
convergence analysis and parameter selection. Information
Processing Letters, 2003, 85(6): 317–325

[17] van den Bergh F. An Analysis of Particle Swarm Optimizers,
Ph.D thesis, University of Pretoria, South Africa, 2001

[18] Wolpert D H, Macready W G. No free lunch theorems for
optimization. IEEE Trans. Evolutionary Computation, 1997,
1(1): 67-82

[19] Xie X F, Zhang W J, Yang Z L. A dissipative particle
swarm optimization. Congress on Evolutionary
Computation, Honolulu, HI, USA, 2002: 1456-1461

[20] Xie X F, Zhang W J, Yang Z L. Adaptive particle swarm
optimization on individual level. Int. Conf. on Signal
Processing, Beijing, China, 2002: 1215-1218

[21] Xie X F, Zhang W J, Lu Y, et al. Modeling and
optimization system for semiconductor devices. Chinese J.
Semiconductors, 2003, 24(3): 327-331 (In Chinese)

[22] Yu Z P, Chen D, So L, Dutton R W. PISCES-2ET manual.
Integrated Circuits Laboratory, Stanford University, 1994

