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1 Introduction

It is important to gain a better understanding about the climate and ecological changes in the world.
One way to address this is to study seasonal migration patterns in songbird populations, since birds
respond quickly to environmental changes [29]. During migratory periods, many species of song-
birds use flight calls, which are species-specific and are distinct from other vocalizations. Therefore,
flight calls information can be used to determine the relative abundance of species and is important
to understand long-term population trends. Due to costly human effort to collect data about birds in
traditional methods, using machine learing (ML) methods to identify bird species from continuous
audio recordings has been a hot topic in in recent conference competitions.1 Although there are
some recent advances [4, 20, 21, 26], it is still an open ML problem to reliably identify bird sounds
in field recordings data due to simultaneously vocalizing birds and various background noise [6].

In this project, we will focus on critical aspects of this problem. We start from some existing
classification methods, e.g., [3, 4, 7, 20, 21, 26], adapt components to the data we have, and finally
develop a scalable software tool. The total process is divided into four steps. First, Audio data are
first preprocessed into spectrograms. The spectrograms are further cleaned by applying background
noise reduction and image processing techniques, and connected pixels (acoustic patterns) in the
spectrograms are labeled into rectangle segments. Second, features are then extracted and selected
from different sources, e.g., file statistics, segment statistics and probabilities, and mel-frequency
cepstral coefficients (MFCCs). Third, the classification is then done by using multiple algorithms,
e.g., naive Bayes, k-nearest neighbors (k-NN) [9], support vector machines (SVM) [8], etc. Finally,
we will explore some ensemble methods [1,2,14,17,19,24,25] for further exploring some properties
on overall performance by combining the predictions of models, as well as facilitating scalability in
real-world usages. The software developed for this project will be used by the Carnegie Museum
of Natural History, and possibly shared with other land managers, researchers, and educators to
enhance the use of flight calls as a method to study the patterns of migratory songbirds.

2 Related work

As mentioned in the Introduction, the total process is divided into standard steps of ML components.

The first part is about preprocessing and segmentation audio data of songbirds. Normally audio
files are first processed into grayscale image by applying the Fourier transform using a Hanning
or Hamming window of samples with some overlap [5, 20]. Only relevant frequency range of the
scope of domain interests are kept. The narrowed spectrograms are then treated as graysale images.
To reduce the background noise, a median clipping method can be applied on each frequency band
and time frame [5]. A spectrogram can also be processed using a series of sub-processes including

1ICML 2013: The Bird Challenge; NIPS 2013: Multi-label Bird Species Classification; MLSP 2013: Bird Classification Challenge
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Gaussian filtering, local gradient, thresholding, and morphological nosing removal [13]. The re-
sulting images can be further handled using standard image processing techniques such as dilution
and median filter (e.g. using scikit-image). In [20], neighboring pixels exceeding certain spatial
threshold (acoustic patterns) in the spectrograms are labeled into rectangle segments. In [13], small
segments are discarded and remaining holes are filled. In [5], a supervised single-instance single-
label classifier is used to label the probability of each pixel as bird sound or noise, and then obtain
predicted segementations by applying a threshold.

The second part is about feature extraction and selection, which can have a large impact on later
classification results. In [5], segment features are divided into two different categories - “mask de-
scriptors” and “profile statistics”. Histogram of gradients (HOG) have also been used [5]. In [13],
features are obtained by applying the template matching function of scikit-image to compute the
similarity at the maximum value of the normalized cross-correlation map with templates. In [20],
features come from three different sources, i.e., file statistics, segment statistics, and segment prob-
abilities. The template matching in OpenCV library is applied only on absolute-intensive spec-
trograms. Many existing work [7, 10, 21, 27] considers MFCCsas features. Features can also be
extracted using unsupervised deep learning [22]. Additional methods, e.g., rescaling [5], concatena-
tion [10], bag-of-words (BoW) model [12], and principal component analysis (PCA) [18], can also
be used for feature engineering.

The third part is about classification. Typical methods include naive Bayes, neural networks, logistic
regression, Gaussian mixture model, radial basis function (RBF), decision trees, k-NN [9], SVM [8],
etc. Binary classifiers can be turned into multi-class ones by using general strategies, e.g., one-
versus-all and pairwise decomposition, to classify instances into multiple classes. Some existing
methods have been used for songbird identification. In [10], a LibSVM is used in a one-versus-
all fashion, and best scores have been obtained with C-SVC SVM type and linear kernel function.
In [22], pairwise SVM, LibSVM, decision trees, and neural networks are used, and the merged
SVM and RDT often leads to better results. Mutiple-instance multi-label (MIML) classifiers, e.g.,
MIML-SVM, MIML-RBF, MIML-kNN are considered in [5].

Finally, ensemble learning methods have also been used for combining the predictions of several
models. In theory, ensembles have more flexibility in the functions they can represent. Typical
methods including gradient boosting (GB) [15], random forest (RF) [2], extremely randomized trees
(ERT) [16], bootstrap aggregating (or bagging) [1], Bayesian model averaging (BMA) [17], and
ensemble of classifier chains (ECC) [24]. Some of them, e.g., GB [7], RF [7,13,27], ERT [20], have
been directly used for songbird identification. There are also some hybrid methods. In [7], GB and
RF are combined by a simple linear blending method, where the final prediction is given by a linear
combination of ensemble predictions, and the combination coefficients are determined by a Lasso
and elastic-net regularization of generalized linear model. In [21], an ensemble of logistic regression
and GB classifiers are considered. In [3], an ensemble of classifier chains with RF is applied.

Many classification and ensemble methods can be obtained in scikit-learn library.

3 Methods

3.1 Preprocessing

Figures 1 to 4 show the preprocessing steps. Similar to the methods used in [20], we first convert
audio files into spectrogram images, and for each segments we use Hanning windows with 75%
overlap. Notice the case that in a processed grayscale image most area was occupied by the random
noise. What we want is to get rid of the background noise completely and increase the contrast
between real signal and the background. Given the several different algorithm tested, the median
clipping algorithm [5] works best because it not only removes most background noise, but also
capture the sound feature clearly and precisely.

Such a algorithm, though perform well in noise removing and feature capturing, requires large
amount of computation because the average and variance of each column of the row need to be
calculated. Given the huge size of the processed grayscale image, we need a more efficient algo-
rithm to segment the image. Further experiments is also needed to explore an balance point between
noise reduction effectivity and efficiency.
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Figure 1: original spectrogram

Figure 2: Median clipped spectrogram

Figure 3: Eroded and propagated

Figure 4: Segmentation
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Finally, we apply standard image processing techniques to further reduce the residual noise dot. And
then we would use find connected pixels from the image and label the segments, as in [20].

3.2 Features

Features can have a large impact on classification results. For this project, we have chosen to imple-
ment a large set of features used in previous successful attempts at birdsong classification. We will
ultimately choose a smaller subset of these features that provide the most discriminatory power.

Mel-Frequency Cepstral Coefficients While flight calls recognition is a new application, audio
recognition is a well developed area in signal processing. We will build features based on MFCCs,
which are commonly used as features in speech recognition systems, but can be sensitive to the
presence of noise [28]; for this reason, we expect that they may be useful features for classifying the
clear lab data but less useful for the noisy outdoor data. A temporal signal is first transformed into
a series of frames where each frame consists of a 13-dimensional MFCC vector, using Wojcicki’s
MATLAB implementation. 2 Each frame represents a duration of 12ms. The step size is 4ms. We
also include the fist and second derivatives of MFCCs, which results in a 39 (13×3) dimensional
vector for each frame.

Bag-of-Words Model over MFCCs In contrast to [11], which assumes that the number of frames is
fixed for all audio segments to classify, we make no assumption on the length of the audio segment,
since the length of flight calls might variate. In this case, we want a feature that is temporally
scale invariant. Intuitively, even when a flight call is temporally scaled (extended or shorten), it
should still be classified as the flight call of the same species. We leverage the progress in image
classification and applied the bag-of-words (BoW) model [12] over our MFCCs. By treating audio
features (MFCCs in our case) as ‘words’, each audio segment is represented by a sparse vector of
occurrence counts of words in BoW model; that is, a sparse histogram over the vocabulary.

We learn the vocabulary, also called the codebook, by performing k-means clustering over sampled
training MFCCs. Codewords are then defined as the centers of the learned clusters. In test time, we
extract MFCCs from the test audio segment and quantize the 39 dimensional MFCCs to a learned
codeword. The audio segment is represented by a K dimensional histogram over the codeword,
where K is the size of the codebook.

One limitation of BoW model on audio segment is that the temporal information are lost in the
model. However, as shown in the experiments, BoW is able to achieve satisfactory classification
result on single-label single-instance case. We build higher order N-gram model on the learned
vocabulary to capture the temporal information.

N-gram model One disadvantage of bag-of-words model is that the temporal information is ig-
nored. We use the histogram of consecutive N words, which is of length KN . Only the N-grams
occurring more than three times in the training data are considered. Therefore, the actual length of
the histogram is much smaller than KN (4210 for N = 2 and 2084 for N = 3).

Denoising The first MFCC is the energy of the audio signal contained in the frame. Since the energy
of noisy frames are lower than that of frames containing flight call signal. We can remove frames
with lower energy and remove the noise.

Baseline The spectrogram based approach in [5] has been used as the baseline for the MLSP 2013
Bird Classification Challenge. We follow their approach and extract mask descriptors from the
labelled regions shown in Figure 4 as our baseline.

3.3 Classifiers

We consider several classifiers/regressors.

Nearest Neighbor (NN). For each testing data, the NN classifier finds the nearest training data point
and transfer the corresponding label. The NN classifier directly reflect the effect of our features and
is used as baseline. Depends on the features, different distance metric should be used. We will
compare the performance of euclidean and χ2 distance on the BoW feature in the experiments.

2HTK MFCC MATLAB by K. Wojcicki: Mel frequency cepstral coefficient feature extraction that closely matches that of HTK’s HCopy.
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Support Vector Machine (SVM). The most common approach for multi-label classification is to
use an ensemble of binary classifiers, where each classifier predicts if an instance belongs to one
specific class or not. SVMs trained in a pairwise fashion has obtained state-of-the-art results on
standard multi-label benchmark datasets [22]. Furthermore, we will be able to integrate different
kernels to improve the performance using the SVM. For example, the χ2 kernel will have a better
performance for histogram than the linear kernel. We also consider support vector regression to
produce soft output for ensemble learning.

Random Forest. Random forests has been widely used for multi-label classification [7, 20, 27, 31].
Random Forest is operated by constructing decision tree structure by the training examples. One of
the popular algorithm is tree bagging, in which the training process includes repeatedly selecting a
bootstrap sample of the training set and fitting the trees to them. After the training process, the label
decision is made either on the majority of the votes or a weighted combination from individual trees.

Logistic Regression. Ensemble of logistic regression has been used for multi-label bird song clas-
sification [21] because of its simplicity. We also consider this method as the baseline for soft output.

3.4 Ensembles

An ensemble combines the prediction power of a set of individually trained classifiersH to produce a
single classifier. Ensembles often are more accuracy as compared to base classifiers in the ensemble.

We focus on investigating weighting methods, as one of the two main methods discussed in [25], for
combining the outputs of base classifiers. Let M be the set of examples, L be the set of labels, K
be the set of classifiers, AM∗ be the true labels, and AMK be the labels assigned by K on M . We
consider a generalized weighting scheme. Based on the labels Atrain

MK on training examples, weights
W and beliefs B are learned, where each wk ∈ W is the weight for k ∈ K, and each blilj ,k ∈ B
is the belief probability of true label li, given the label lj assigned by k. For each testing example
X , the ensemble classifier h̃(X) assigns votes on labels L by the values WB for testing labels, and
return the label or “UNKNOWN” using majority voting with a threshold value V̄ ∈ [0, 1].

The weighting scheme is represented by a tuple < F -strategy(K̃), C-strategy, B-strategy, V̄ >.

The weight vector W can be obtained using a two-step scheme. First, F -strategy returns a binary
array F about the chosen classifiers. Here a subset of top K̃ classifiers are picked with the highest di-
versity, which has shown to have positive relationship with the ensemble accuracy [19]. We consider
nine measures of diversity [19], i.e., disagreement, correlation coefficient, Q-statistic, double-fault,
coincident failure diversity, entropy, interrater agreement, Kohavi-Wolpert, and generalized diver-
sity. Second, the weight coefficients C are assigned by C-strategy. The equal assignment just gives
the same weight as in the canonical majority voting, where the performance-based assignment [23]
assigns weights proportional to the accuracy performance of each classifier onM . The final weights
is W = F · C.

One can also obtain the weight coefficients C by optimizing in the configuration space. We con-
sider DEPSO, a cooperative group optimizer [30], to obtain the optimal weights for K, and thus to
know the lowest training error that can be achieved using weights on given Atrain

MK . Without loss of
generality, the weighting space is defined as ck ∈ [0, 1] for each weight coefficient on k.

B-strategy obtains the belief matrix B, by only considering forms that are independent on k. A
basic form of B is a diagonal L × L sub-matrix for each k, which is equivalent to the one using in
the canonical majority voting. A new form, which is not included in [25], obtains the beliefs as the
frequency of (li, lj) pairs, where li = amk ∈ Atrain

Mk and lj = am∗ ∈ Atrain
M∗ , on training examples.

In real-world usages of songbird identification, people would prefer a very higher precision rate,
among the classified results on a big amount of testing examples. We accommodate the real-world
requirement at the ensemble level, by defining one label as “UNKNOWN”, to include those in-
stances that are not surely classified. This is also has an implication for scalability, as the labels
might change over time, and studies can be mainly performed on “UNKNOWN” instances.
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4 Experiments

We first evaluate our system on single-label data to see if the data are separable using our method.

Data. We use the flight calls of songbirds manually segmented and labeled by Amy Tegeler, an
Avian Ecologist from the Carnegie Museum of Natural History, to evaluate the performance of our
system on indoor flight calls classification. We used the data from year 2008 to 2013. The total
number of species is 32. But only 11 species has more than 100 data. Therefore, the experiment is
performed on those 11 species, and 100 data points are randomly sampled from each species. The
100 data points are randomly partitioned into 20 testing data and 80 training data for each species.

Segmentation. Since the flight call segments are already manually identified, we do not perform
segmentation in this experiment.

Features. We use the Mel-Frequency Cepstral Coefficient, BoW over MFCCs, denoised BoW over
MFCCs, 2-Gram and 3-Gram in Section 3.2 as the features for this experiment. The size of the code
book is 200, and the MFCCs consider the frequencies from 1500 Hz to 22000Hz.

Feature Analysis. Before beginning with the training process, we first examine the property of the
features of BoW over MFCC. We can see that most of the value in the original data is zero. After
taking the log value of the data, we can find that a small group of the data is separated from the
others (see Figure 5). In some of the dimension, this small region contains only a number of specific
species of birds, which might be helpful in the classification.

In the denoised version of BoW over MFCC and 2-Gram features, the features in some of the
dimension can clearly separate a specific number of species only by zero and non-zero value. Figure
6 shows the 180th features of denoised BoW over MFCC and the second feature in 2-Gram. In our
experiments, we find that the species which can be separated very well by some of the dimensions
of these features are classified more accurately than the others.

Feature Selection. Due to the limited size of our data, using all the features at the same time will
lead to serious overfitting problem. So here feature selection is done by cross validation. After the
process, we find that most of the classifiers have higher performance using the denoised version of
BoW over MFCC and 2-Gram features. Taking a portion of the features does not help in increasing
the performance. To demonstrate the difference between BoW over MFCC and denoised version of
BoW over MFCC, we also report the performance of using the former.

Baseline. The accuarcy (using Random Forest) on mask descriptors by [5] is 0.25.

Classifiers. In Table 1, we compare the results using k-NN, SVM and random forest classifier.

First, taking the log over the features of BoW of MFCC decreases the accuracy in rbf SVM classifier.
The features are expected to be more of a Gaussian distribution after taking log and can be separated
better using rbf kernel. However, the performance decreases. The reason is that the transformed
features are distributed in a skrewed Gaussian so that it can not be separated perfectly as well.

(a) (b)

Figure 5: (a) is the histogram of second feature. Most of the values are close to zero. (b) is the
histogram of the original data after taking log.
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Table 1: Accuracy of different classifier

Classifier Accuracy(%) Features Settings

linear SVM 67.7273/ 70.4545 BoW/ denoised
poly SVM 69.0909/ 70.4545 BoW/ denoised degree: 1

70 denoised BoW degree: 2
70.4545 denoised BoW degree: 3

rbf SVM 70/ 70.4545 BoW/ denoised
68 BoW (log)

76.8182 denoised BoW γ = 7.9433
78.1818 denoised BoW + 2gram

sigmoid SVM 70.9091/70.4545 BoW/ denoised
random forest 57/63 BoW/ denoised 100 trees; 5 splits

63 denoised BoW 100 trees; 2 splits
NN-euclidean 54.09/62.73 BoW/ denoised
NN-chisquare 62.27/71.82 BoW/ denoised

Second, the performance of all kinds of classifier increases using the denoised features extracted
from BoW of MFCC. Examine the features in images (see Figure 6) help us understand the proper-
ties of them. The denoised features concentrate on a small number of specific species.

Besides, among all the classifier, SVM classifiers have the highest performance in accuracy and
random forest has the lowest performace. The reason why random forest does not perform well
on our data is that the sample size is small. SVM with rbf kernel has the highest performance
(accuracy: 0.7682) using denoised BoW. The accuracy reaches 0.7818 with denoised BoW and 2-
Gram features. NN has higer performance using chisquare distance with denoised BoW (accuracy:
0.7182).

Ensembles. Ensemble learning is then performed on the labels by generated 8 classifers, including
k-NN with euclidean, k-NN with chi-square, SVM-linear (-t 0), SVM-χ2 (-t 5), SVM-RBF (-c 4000
-g 15 -t 2), linear SVM (-c 40), polynomial SVM (-c 1000 -g 1 -d 2 -t 1), sigmoid SVM (-c 1000 -g
1 -d 2 -t 3). We take 4/5 examples as training samples, and 1/5 examples as testing examples.

Figure 7 gives the training and testing accuracy for the nine measures of diversity (1. disagreement,
2. correlation coefficient, 3. Q-statistic, 4. double-fault, 5. coincident failure diversity, 6. entropy,
7. interrater agreement, 8. Kohavi-Wolpert, and 9. generalized diversity) in different K̃ values,
where C-strategy is uniform, and B-strategy is the basic form. Accuracy increases as K̃ increases,
which might due to K is not sufficently large. However, the test accuracy can be better as K̃ = 5
for some measures of diversity.

(a) (b)

Figure 6: (a) is the 180th features of denoised BoW over MFCC. Most of the high values are around
2 species of birds. (b) shows the second dimension of the 2-Gram features. All the non-zero values
appear only whithin one species.
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Figure 7: Training and testing accuracy for different measures of diversity in different K̃ values.
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Figure 8: Training and testing accuracy for different measures of diversity in different K̃ values.

Figure 8 gives the training and testing accuracy for different measures of diversity in different
C-strategy and B-strategy, where K̃ = 7. The new form of B-strategy can lead to better testing
accuracy for some measures of diversity, although does not help on training accuracy.

The optimization method using DEPSO is performed as K̃ = |K|. For the basic and new forms of
B-strategy, it respectively obtained 75.26% and 71.82% training and testing accuracy, and 75.26%
and 71.36% training and testing accuracy. This gives the best training accuracy is 75.26%, and it
does not lead to higher test accuracy.

Figure 9 gives the classification accuracy and rates for different C-strategy methods in different V̄
values, where K̃ = |K|, with the new form of B-strategy, on testing examples. In general, the
accuracy accuracy increases and classification rate decreases, as V̄ increases. However, there is a
drop at V̄ = 0.8, which means the base classifers may reach agreements on some wrong labels. The
optimizion method can keep the classification rate higher, especially in the high accuracy region.
For example, for V̄ = 0.7, there is a nearly 95% accuracy rate with a 35% classification rate. This
is critically useful for real-world applications based on statistics, as the sample size is huge.
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Figure 9: Classification accuracy and rates for different C-strategy methods in different V̄ values.
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