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1 Motivation

Planning is a notoriously hard combinatorial problem. Domain-independent computational com-

plexity for propositional STRIPS [6] planning and related formalisms are quite well-known [3]. In

general, it is already PSPACE-complete to determine if a planning instance has any solutions. In

the case where some planning domain is fixed in advance [5], planning in a domain that can be

represented in the STRIPS subset of PDDL [7] can be PSPACE-complete. Further complexity

results have been shown for some standard planning domains. For planning domains in a common

transportation theme [8], the plan existence problem might be decided in polynomial time, but the

bounded plan existence problem is often NP -complete.

Various methods have been proposed to solve planning problems. In plan-space planning,

UCPOP is a sound, complete, partial order planner whose step descriptions include universal

quantification and conditional effects [20]. In state-space planning, Prodigy [19] is a nonlinear

planning architecture that has choice points on either to apply an applicable operator or to continue

solve pending goals. In Graphplan [1], a compact structure called a planning graph is constructed

to approximate the reachability graph with alternating proposition and action layers. In Satplan

[13], the planning problem is formalized in terms of propositional satisfiability, and can them be

solved using stochastic search algorithms. In heuristic-search planning (HSP) [2], the heuristic is

automatically extracted from the declarative problem representation, and is used in the context of

best-first algorithms for guiding the search in solving planning problems. As an improved HSP,

the fast-forward (FF) planning system [10] uses a different search technique, i.e., an enforced form

of hill-climbing that combines local and systematic search, using relaxed Graphplan to inform the

search with a goal distance estimate and with helpful actions. Some advanced structure clues, e.g.,

landmarks, might be further considered to accelerate the search [15]. By calling FF on a carefully

constructed deterministic variant of the planning problem, FF-Replan [21] can perform highly

effective in planning under uncertainty. In addition, If reward information is available, uncertainty

might be handled using (partially observable) Markov decision processes [12, 11, 16, 17] for obtaining

or choosing a policy, i.e., a mapping from states to actions.

Personal planning is of significance for improving personal production and operating efficiency

of personal time resource. Most of the current available methods and software which called as

“personal planning solutions” are however actually aiming to satisfy or to optimize a personal

scheduling rather than personal planning, where a set of tasks will be reordered according to their

time sequence and required time amount to achieve them. A generic personal planning problem

has certain constraints, a set of preferences, and some expected accumulated reward, which are not
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as simple as a personal scheduling problem. In this study, we will present a primary solution to

a personal planning problem. To our best knowledge, it is still an open question in practice for

solving a complex personal planning problem.

2 Problem Description

For a planning problem involving deterministic actions and complete information, a basic state

space consists of a finite set of states S of the world, a finite set of actions A, a state transition

function t : S×A → 2|S|. For more realistic domains, there is also a reward function r : S×A → ℜ

that provides the reward of doing action a ∈ A in state s ∈ S. In an actual state model, it contains

the state space, and additionally a given initial state s0, and a set of goal states sG. A plan is

then a set of actions that generate a state trajectory to transform s0 to sG. The solution is optimal

when the total cost is minimized.

In practice, the encoding language for planning tasks is usually the Planning Domain Definition

Language (PDDL) [7]. The PDDL language provides a foundation for an expressive representation,

which enables domain models for realistic applications. PDDL is intended to be a neutral specifi-

cation of a planning domain, and is designed to provide no domain-specific advice for planners.

Planning is more about “thinking” about the way of modeling real-world domains. In a personal

planning problem, the world is spatio-temporal in dimension, and consists of different activities

subject to various real-world (e.g., physical, social, and economic) constraints. The underlying

spacial domain can be described with an undirected graph G =< N,L >, where each node n ∈ N

is a location to hold some activities, and each link l ∈ L describes the connectivity between two

locations. Similar to the Logistics domain [18], we consider the case of multi-modal transportation

with vehicles, where an airplane can fly between some locations called airports, and a car can

drive between some locations (with solid links, where at least one side is a city but not an airport).

Some basic activities are considered. First, a person can load/unload a document or luggage or

parcel, which is defined as package, to/from a vehicle, e.g., car or airplane, and carry a package from

one location to another. Second, a person would like to meet some experts at different locations.

Let the person be the only agent. The basic domain is defined by objects, predicates, and

actions.

The constant objects describe entities that exist in a planning domain for the activities of the

agent. The requirement “typing” is considered to formalize the property of different entities, and

reducing any redundant predicates and actions that operate on objects of same types. There are

following object types:

- Two location types, i.e., {city, airport}: Each location is a node in the underlying graph G.

- One package type: A package is located at a location, and can be transported to another

location.

- One expert type: Each expert lives at a given location. As a task, the agent would like to

meet an expert (for some potential gains).

- Two vehicle types, i.e., {car, airplane}: Each vehicle can transport the agent (and a package,

if has) from an origin location to a destination location with a link. For each car, at least one of

the two locations should not be an airport. For each airplane, both locations should be airports.

- One target type, i.e., {package, expert, vehicle}.
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The predicates consist of a list of literals that are taken to be true at all times in this domain.

There are following predicates:

- (is-airport ?l - location): It examines if the location is an airport.

- (is-connect ?l - location ?l - location): It provides a link between two locations.

- (at-own ?l - location): It indicates if the agent is currently at a given location.

- (at ?t - target ?l - location): It checks if a target is currently at a given location.

- (in ?p - package ?v - vehicle): It indicates if a package is currently in a vehicle.

- (conflict ?e1 - expert ?e2 - expert): It indicates if there is a conflict to visit expert e2 before

expert e1.

- (is-meet ?e - expert): It indicates if the agent has successfully met an expert.

The actions are operator-schemas with parameters, which are instantiated during execution.

There are following actions:

- drive (?v - car ?from - location ?to - location): The agent drives a car from one location to

another location with a link. At least one of the two locations is not an airport.

- fly (?v - airplane ?from - airport ?to - airport): The agent flies from one airport to another

airport with an airplane.

- load (?v - vehicle ?p - package ?l - location): The agent loads a package into a vehicle at a

given location.

- unload (?v - vehicle ?p - package ?l - location): The agent unloads a package from a vehicle

at a given location.

- meet (?e - expert, ?l - location): The agent meets an expert at a given location. For any

expert that met earlier, the is-meet state is negated if there is a conflict with the current expert.

The real-world personal planning problem will be treated as an online planning problem. At

each time point, only the problem in a given horizon is considered and it will be simplified as a

deterministic planning problem. For any uncertainty, a carefully constructed deterministic variant

of the planning problem might be considered as in FF-Replan. The initial state contains the

underlying graph G of the world, the initial location of the agent, packages, experts, and vehicles.

The set of goals might contain the final location of the agent and packages, and the status of

meeting with experts.

The planning aims to minimize the time cost of finishing all goals. For simplicity, the time

spend on each action is assumed to be the same. Hence the cost will be propositional to the total

number of actions, since the agent can only do one action at each time.

3 Solving Approach

Various planners have been proposed for deterministic planning problems. Many of them, e.g.,

HSP, IPP [9], BLACKBOX [14], MIPS [4], Fast Downward [9], however, do not support sub-types

that used in this personal planning domain. Only the FF planner is considered in this project.

The FF planner belongs to the class of heuristic-search planning, where a heuristic function is

derived from the task specification of each planning instance to guide the search in the state space.

The basic system architecture of FF contains two basic components: Enforced Hill-Climbing, and

Relaxed Graphplan.
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Given a state, relaxed Graphplan is used as a heuristic estimator to estimate the distance to a

goal in polynomial time, and additionally selects a set of promising successors to the state, called

helpful actions, for pruning the search, although without preserving completeness.

Enforced Hill-Climbing is a forward searching engine to work on each state, and to perform

exhaustive breadth-first search for the better states, by assuming state spaces are simple in structure

with small-sized local valleys and plateaus. The search is only complete on any task that is dead-end

free, although it is PSPACE-complete to decide the property of dead-end free for a task.

Two techniques are integrated for handling goal orderings. The added goal deletion is a heuristic

to cut out branches when some goal has been achieved too early. The goal agenda approach feeds

the goals in the order recognized in a preprocessing phase by looking at all pairs of goals.

4 Evaluation

Figure 1 gives an example of the personal planning domain to be evaluated. There are totally 10

locations (A − J), in which F and G are airports that hold an airplane a1 to connect two parts

A−F and G−J. Initially, the agent is located at A. There are two vehicles, where v1 and v2 are

respectively located at A and G, and they can be respectively seen as a private car and a rental

car. There is one package p1, which is initially located at B. There are four experts, e1−e4, whom

are respectively located at C, D, J, and E.

Figure 1: An Example of the Personal Planning Domain

To test on problems with different complexity and properties, four test cases are considered:

1) There are two goals: (at-own A) and (at p1 I). In other words, the agent needs to deliver

package p1 from B to I, and then comes back to A.

2) There are following goals: (at-own A), (is-meet e1), (is-meet e2), (is-meet e3), and (is-meet

e4). In other words, the agent needs to visit all four experts, and then comes back to A.

3) There are following goals: (at-own A), (at p1 I), (is-meet e1), (is-meet e2), (is-meet e3), and

(is-meet e4). The goal set is a union set of the goals in cases 1) and 2).

4) There are the same goals in case 3). The only difference is two additionally conflicting

constraints (conflict e2 e1), (conflict e4 e3), which limits some orders for visiting experts.
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The FF planner was tested on these cases. It found feasible plans for all four cases:

Case 1) 1. (DRIVE V1 A B) 2. (LOAD V1 P1 B) 3. (DRIVE V1 B E) 4. (DRIVE V1 E F) 5.

(UNLOAD V1 P1 F) 6. (LOAD A1 P1 F) 7. (FLY A1 F G) 8. (UNLOAD A1 P1 G) 9. (LOAD

V2 P1 G) 10. (DRIVE V2 G I) 11. (UNLOAD V2 P1 I) 12. (DRIVE V2 I G) 13. (FLY A1 G F)

14. (DRIVE V1 F A)

Case 2) 1. (DRIVE V1 A F) 2. (DRIVE V1 F C) 3. (MEET E1 C) 4. (DRIVE V1 C F) 5.

(DRIVE V1 F E) 6. (MEET E4 E) 7. (DRIVE V1 E D) 8. (MEET E2 D) 9. (DRIVE V1 D E)

10. (DRIVE V1 E F) 11. (FLY A1 F G) 12. (DRIVE V2 G J) 13. (MEET E3 J) 14. (DRIVE V2

J G) 15. (FLY A1 G F) 16. (DRIVE V1 F A)

Case 3) 1. (DRIVE V1 A B) 2. (LOAD V1 P1 B) 3. (DRIVE V1 B C) 4. (MEET E1 C) 5.

(DRIVE V1 C D) 6. (MEET E2 D) 7. (DRIVE V1 D E) 8. (MEET E4 E) 9. (DRIVE V1 E F)

10. (UNLOAD V1 P1 F) 11. (LOAD A1 P1 F) 12. (FLY A1 F G) 13. (UNLOAD A1 P1 G) 14.

(LOAD V2 P1 G) 15. (DRIVE V2 G I) 16. (UNLOAD V2 P1 I) 17. (DRIVE V2 I G) 18. (DRIVE

V2 G J) 19. (MEET E3 J) 20. (DRIVE V2 J G) 21. (FLY A1 G F) 22. (DRIVE V1 F A)

Case 4) 1. (DRIVE V1 A F) 2. (DRIVE V1 F E) 3. (MEET E4 E) 4. (DRIVE V1 E D) 5.

(MEET E2 D) 6. (DRIVE V1 D E) 7. (DRIVE V1 E F) 8. (DRIVE V1 F C) 9. (MEET E1 C)

10. (DRIVE V1 C F) 11. (FLY A1 F G) 12. (DRIVE V2 G J) 13. (MEET E3 J) 14. (DRIVE

V2 J G) 15. (FLY A1 G F) 16. (DRIVE V1 F E) 17. (DRIVE V1 E B) 18. (LOAD V1 P1 B) 19.

(DRIVE V1 B E) 20. (DRIVE V1 E F) 21. (UNLOAD V1 P1 F) 22. (LOAD A1 P1 F) 23. (FLY

A1 F G) 24. (UNLOAD A1 P1 G) 25. (LOAD V2 P1 G) 26. (DRIVE V2 G I) 27. (UNLOAD V2

P1 I) 28. (DRIVE V2 I G) 29. (FLY A1 G F) 30. (DRIVE V1 F A)

Case 1 is a simple extension of the Logistics domain. In the plan, it solves the traditional Logistic

problem in Steps 1-11, and then returns to location A in Steps 12-14. This plan is optimal.

Case 2 essentially says that the agent must visit all locations where the experts are. Surprisingly,

for this simple case, FF could not find the optimal solution, which should be: 1. (DRIVE V1 A B)

2. (DRIVE V1 B C) 3. (MEET E1 C) 4. (DRIVE V1 C D) 5. (MEET E2 D) 6. (DRIVE V1 D

E) 7. (MEET E4 E) 8. (DRIVE V1 E F) 9. (FLY A1 F G) 10. (DRIVE V2 G J) 11. (MEET E3

J) 12. (DRIVE V2 J G) 13. (FLY A1 G F) 14. (DRIVE V1 F A).

Case 3 essentially says that the agent must visit all locations where the experts are. For this

case, FF could find the optimal solution, possibly because the task of delivering package p1 provide

a strong bias to arrive location B first.

Compared to Case 3, Case 4 applies two additionally conflicting constraints, which essentially

say that the agent should meet e2 before e1, and meet e4 before e3. For this case, FF could only

generate a solution that is far from the optimal solution, which should be: 1. (DRIVE V1 A B) 2.

(LOAD V1 P1 B) 3. (DRIVE V1 B E) 4. (MEET E4 E) 5. (DRIVE V1 E D) 6. (MEET E2 D) 7.

(DRIVE V1 D C) 8. (MEET E1 C) 9. (DRIVE V1 C F) 10. (UNLOAD V1 P1 F) 11. (LOAD A1

P1 F) 12. (FLY A1 F G) 13. (UNLOAD A1 P1 G) 14. (LOAD V2 P1 G) 15. (DRIVE V2 G I) 16.

(UNLOAD V2 P1 I) 17. (DRIVE V2 I G) 18. (DRIVE V2 G J) 19. (MEET E3 J) 20. (DRIVE

V2 J G) 21. (FLY A1 G F) 22. (DRIVE V1 F A).

In summary, it has been shown that FF can obtain feasible plans for these cases very quickly.

However, if adding goals that require visiting cities in some orders, FF might find the plans far

from the optimal. Therefore, it is nontrivial to investigate more competent heuristics for handling

these novel situations. In the framework of FF-Replan, probabilistic effects might be handled by
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calling FF on a carefully constructed deterministic variant of the planning problem, selecting actions

according to the plan, and replanning as well as monitoring an unexpected effect. Next step, the

personal planning problem might include more complex features: (1) time resource required for

each action is variable; (2) there is constraint on start time and there is deadline for some tasks;

(3) beyond minimizing time costs, the agent can be over-subscribed.
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