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Abstract – Simulation optimization for complex space is realized by applying genetic algorithms (GAs) to searching the 
optimum parameters that satisfying the desired characteristics. It is necessarily to use parallel calculation to obtain 
satisfying results in a reasonable amount of time. The advantages and drawbacks of existing parallel calculation mode are 
analyzed. Then the multiple-demes GAs in master-slave mode (MDMS) is proposed to make progress in not only the 
quality of solutions but also the speedup for multiple-processors, when comparing to conventional master-slave mode, 
while shows less limitations on the number of processors than that of coarse-grained and neighborhood mode. The test 
example in semiconductor device synthesis shows the efficiency. 
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1. Introduction 

 
Integrating optimization routines into simulation 

packages has become almost a necessity, in order to seek 
improved settings of user-selected system parameters 
with respect to the performance measure(s) of interest [1]. 

In simulation optimization, it is often consider that 
simulation model as a “black box”, and the optimization 
procedure uses the outputs from the simulation model 
which evaluate the outcomes of the inputs that fed into the 
model, and decides upon a new set of input values based 
on the current and the past evaluations.  

Recently, many studies using modern heuristic 
techniques for simulation optimization have been 
encountered [3-6]. The comparison [7, 8] shows genetic 
algorithms (GAs) are converged faster than tabu search 
(TS) and simulated annealing (SA), which makes it more 
suitable for simulation optimization, because in most 
cases, the major drawback of simulation for practical 
applications is time-consuming. However, to solve some 
complex problems, the computational requirements can 
be extremely large because GAs may still require 
hundreds or thousands of evaluations. 

Fortunately, GAs is known as inherently parallelism [9]. 
Therefore, it is reasonable to use parallel calculation to 
obtain satisfying results in a reasonable amount of time.  

The key requirements in realizing parallel calculation 
for simulation optimization include:1) it has high speedup 
for different number of processors, while with high 
quality of solutions; 2) it must be robust when network 
failures are encountered between some processors. 

The paper is organized as follows. Section 2 provides a 
basic view for multi-demes GAs, and Section 3 analyzes 
the drawbacks of existing parallel calculation models. 
Section 4 studies the feasibility and speedup of 
multiple-demes GAs in master-slave mode. Section 5 

gives an example in semiconductor device synthesis to 
show the efficiency of the methodology. 
 
2. Multiple-demes GAs (MDGAs) [10] 
 
2.1 Algorithm description 

 
For multiple-deme GAs, the population is partitioned 

into a number of isolated demes, each one of which 
evolves independently, trying to optimize the same 
function. Typically, a rings-type neighborhood structure 
(Fig. 1) is defined over this set of demes, so that each 
deme swaps some good individuals with its neighbors in a 
given rate. This swapping activity is called migration.  
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Fig. 1. Rings-type neighborhood structure 

 
Fig 2 shows the principle of standard GAs (sGAs) in 

each deme, which is considered as an evolved population. 
For each generation, the population is evolved by genetic 
operations, such as mutation, crossover, etc., and updated 
by replacing some individuals.  
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Fig. 2. Principle diagram of sGAs in a deme 
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The relation of solution quality with the evolution 

generations Gn is mainly affected by the number of demes 
M, and for each deme, the sub-population size Sis, and 
evolved individuals in each generation Ses, interval 
generation of migration k, migration rate mr. For the 
convenience of comparison, the initial sub-populations in 
different demes use same individuals. The total number of 
individuals needed to be evaluated during the evolution 
process is equal to Sis+ Gn*Ses*M.  
 
2.2 Performances of MDGAs 
 

From the previous studies [10-12], the MDGAs have an 
appealing trait in that they often provide high quality 
solutions than sGAs, with several striking characteristics: 
1) its decentralized search, which allows speciation 
(different demes evolve towards different solutions); 2) 
the larger diversity levels (many search regions are sought 
at the same time); 3) an intensive exploration performed 
by all the demes; and 4) exploitation inside the demes, i.e., 
refining the better partial solutions found at any moment. 

Migration policy is an important design factor, due to 
two reasons: 1) enhances the number of samples with high 
fitness in each deme to speed up evolution, so the frequent 
migrations induce fast convergence; 2) introduces new 
genes into each deme, so reasonable migrations enhance 
the diversity of demes to fighting premature convergence, 
while in the same time, it blends the genes with the cycle 
M*k, i.e. frequent migrations will decrease the diversity of 
demes. “Considerable isolation” [11] is very important. 

To make an intuitionistic view, a test based on a 
nonlinear function G9 [13] is used to show the typical 
properties of MDGAs. The parameter F=Log(Fcalc-Fopt) is 
used to describe the convergence quality. Where Fcalc 
represents the mean value of the best evolution results 
(here we perform calculation 100 times), and Fopt is the 
optimum value. For MDGAs, Sis=100, Ses=20, mr=2%, Gn 
=300. Fig. 3 shows the relations between F and Gn/k (i.e. 
migration times), when M=3, 10. 
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Fig. 3. F versus Gn/k, when Gn=300 

 
The bound case that Gn/k=300 is equivalent to a single 

large population approximately, and the bound case that 
Gn/k=1 means no migration occurs among demes. 

It can be found: 1) with appropriate migration times, 
the multiple-demes algorithm can get better convergence 
quality than the above bounding cases; 2) the quality of 
solution is more stable for large M with high frequent 
migrations, which is due to the slowly blending of genes. 

Fig. 4 shows the relations between F and M, where 
M*Gn=3000, k =10. For M=1, it represents a sGAs. It can 
be found that the best F occurs with appropriate M and Gn, 
since F is decreased when M or Gn is increased.  
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Fig. 4. F versus M, when M*Gn=3000 

 
The superior of MDGAs can be explained by 

shifting-balance theory [14]. This began with the idea that 
interactions among loci could result in populations 
achieving a genotypic state that was locally relatively fit 
(a ‘peak’), but was not as fit as possible because of 
intervening unfit genotypes (‘valleys’). It suggested 
several mechanisms by which evolution might allow a 
population to reach higher adaptive peaks, including 
novel favorable mutations, relaxation of selection, 
qualitative changes in the environment. 

Overall, one may conclude that the multiple-deme 
model is well suited to observe the well-balanced role of 
diversification and intensification during the search 
process. Each deme might be seen as intensification in a 
particular region and a great number of demes provide 
some diversification in the global space. 
 
3. Parallel calculation mode[10-12] 
 

The parallel GAs (PGA) has been implemented by 
several ways, that is, coarse-grained, neighborhood and 
master-slave mode, which are the classification according 
to the connection topology of multi-processors. 

To ensure the reduction of calculation time, the total 
number of individuals had better not be increased. As 
shown in Fig. 4, in order to provide high quality results, 
the parameters of PGAs, such as number of demes, 
population size, etc., should be well adjusted.  

However, for coarse-grained PGAs, the number of 
demes is equal to the number of processors. For 
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neighborhood PGAs, the population size is multiple of the 
number of processors. The additional limitations will 
enhance the difficulty to find high quality solutions. 

Moreover, for coarse-grained and neighborhood PGAs, 
the neighboring processors will swap information, which 
makes the demes should be evolved synchronously. Then 
it needs to wait for the slowest processor. For the worst 
case, the system will be stopped if any network failure is 
encountered between the processors.  

The master-slave mode can avoid the above drawbacks 
of coarse-grained and neighborhood mode.  And they 
have many advantages: 1) be easily to implement, and 
significant reduction for calculation time are possible, 
especially when communication time can be neglected; 2) 
provide an ability to balance the speed difference between 
processors by allocating the individuals to idle processors, 
even network failure occurs between master and slaves. 

However, some key drawbacks of the conventional 
master-slave mode should to be emphasized: 1) it is based 
on sGAs, which provide lower quality solutions; 2) the 
communication time and the unbalanced load among 
processors may reduce the speedup. 

 
4. Multiple-demes GAs in master-slave mode (MDMS) 
 
    As shown in Fig. 5, a scheduler in master side will be 
used to collect all active individuals in the demes of 
MDGAs, and deliver each individual to be calculated by 
the simulation model in any idle slave processor. An 
active individual means it is independently to other 
individuals that will be delivered to the slaves. 
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Fig. 5. The concept of MDMS 
 

4.1 Feasibility from the effect of communication time 
 

For the parallel calculation of simulation optimization, 
the evolution of an individual includes genetic operations, 
network communication, and simulation to evaluate the 
fitness. The simulation is often time-consumption, so the 
time for communication and genetic operations can be 
neglected. For an example, a typical device simulation by 
costs several minutes, while the communication time in 
local area network costs only several seconds, and the 
genetic operations costs only several milliseconds. 
 

4.2 Speedup estimation 
 

Suppose there have N processors are used to realize the 
parallel calculation for simulation optimization, and each 
individual finishes its simulation in same time T.  

As shown in Table 1, three type of GAs are compared, 
where Mx is an integer and is large than 1, Gx can be 
divided exactly by Mx. The total number of evolved 
individuals Set is same, which is equal to Sx*Gx. For case 
3), the interval generation of migration is k. 

 
Table 1. Different GAs to be compared 

Cases M Ses Gn 
1. sGAs(S) 1 Sx Gx 
2. sGAs(L) 1 Sx*Mx Gx/Mx 
3. MDGAs Mx Sx Gx/Mx 

 
For the convenience of discussion, we define a function 

{x} to represent the minimum integer that not less than x 

 {x}
integeran not  is x if

integeran  is x if
1][

][





+
=

x
x    

where [x] means the integer part of x. 
For master-slave mode, if there have St’ individuals that 

are independently to each other to be simulated at 
different N processors, then the calculation time 
TIt=T*{St’/N}. Because the probability of that St’ can 
divide exactly N is only 1/N, for most case, some 
processors will be idle in the last stage. 

For GAs, the evolution process is a Markov chain, 
which the current generation is effected by the previous 
generation. Only the individuals in same generation are 
independently to each other. The real calculation time is 

 TRt = Ti+Tet 
Where Ti= T*{Si/N} and Tet are the calculation time for 
initial and evolved individuals, respectively. 

The speedup for parallel GAs is defined as 
 Rs = Ts/TRt        (1) 

where Ts is the calculation time for the serial version. 
   Since Ti is same for the GAs to be compared, in order to 
estimate the differences of the calculation time for 
different GAs, only Tet is needed to be discussed. The 
minimum calculation time for all the evolved individuals 
Tet,min= T*{Set/N} occurs when they are all independent to 
each others, such as in random search. 

For case 1), the calculation time is 
Tet, 1 = {Sx/N}*Gx*T      (2) 

Suppose Sx=Xa*N+Xb, where Xa=[Sx/N], Xb=Sx%N is 
the modulus. Then 

 Tet, 1/T = Xa*Gn+{Xb/N}*Gn 
If Xb≠0, then  

Tet, 1/T = Gx*(Xa+1)        
Since Ts,et/T = Sx*Gx, then from (1), the speedup for 

evolved individuals Rs, et is 
 Rs, et = Ts,et/Tet, 1=N-(N-Xb)/(Xa+1)   (3) 
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If Xa is small, i.e. Sx is small, then Rs,et may be small and 
unstable for large N. 

For case 2), the calculation time is 
Tet, 2 = {Sx*Mx/N}*Gx*T/Mx    (4) 

For case 3), Fig. 6 shows the evolved individuals of k 
generations between the interval of two migrations for 
multiple-demes GAs, where Sx,i,j represents the evolved 
individuals at jth deme in ith generation.  

For the same generation, the individuals in all the Mx 
demes are actively, which can be sending to the scheduler 
for parallel calculation immediately. 

Moreover, the demes are isolated to each others, so the 
individuals in different demes are independently. If the 
individuals in Sx,i,j have been calculated, after few time for 
genetic operations, the individuals in next generation 
Sx,i+1,j are actively and can be deliver to the scheduler for 
parallel calculation. 
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Fig. 6. The evolved individuals between two migrations 

 
For the ith generation, the number of individuals 

Sxt,i=Mx*Sx, which are all active. Suppose Sxt,i=Xa*N+Xb, 
where Xa=[Sxt,i/N], Xb=Sxt,i%N. Then as shown in Fig. 6, 
after Xa times parallel calculations, totally Xa*N 
individuals are calculated, then there have [Xa*N/Sx] 
demes in next generation are actively. For the Xa+1 times, 
there have Xb+[Xa*N/Sx]*Sx active individuals. In order to 
avoid idle processors, it only needs to satisfy 

 N ≤ Xb+[Xa*N/Sx]*Sx      (5) 
i.e. Sxt,i-N ≥ Sx*{Xb/Sx}-Xb. 
Suppose Xb=Xc*Sx+Xd, where Xc=[Xb/Sx], Xb=Xb%Sx. 

Then we should have 
 Sxt,i-N ≥ Sx*{Xd/Sx}-Xd     (6) 
If Sxt,i>N, then Sxt,i-N≥Xb. To make (6) exists, it needs 
 Xb ≥ Sx*{Xd/Sx}-Xd       
i.e. 2Xd ≥ Sx*{Xd/Sx}-Xc      (7) 
Since Sx ≥ Sx*{Xd/Sx}-Xc. To make (7) exists, it needs 
 2Xd ≥ Sx        (8) 
Since Sx*{Xd/Sx} ≤ Sx, with (8), it has 
 Sx/2 ≥ Sx*{Xd/Sx}-Xd      (9) 
With (6) and (9), if Sxt,i-N ≥ Sx/2, then (5) come into 

existence. It means enough active individuals in i+1 
generation can be delivered to the idle processors. 
Analogically, it means that all the individuals in the 

interval generations between two adjacent migration 
generations can be seemed as whole independently to 
each others. The number of independent individuals is 
equal to k*Mx*Sx, then calculation time is 

Tet,3 = [Gx/(k*Mx)]*{ k*Mx*Sx/N}*T 
+{((Gx/ Mx)%k)* Mx*Sx/N}*T   (10) 

Since for any integer a≥0 and any float x≥0, it has 
 {ax} ≤ a*{x}        
Then from (2), (4), (10), we have Tet,3 ≤ Tet,2 ≤ Tet,1. 
When k=1, then Tet,3=Tet,2; and when no migration 

occurred during the evolution, then Tet,3=Tet,min. 
If 0≤Sxt,i-N≤Sx/2, the estimation for calculation time are 

complicated. However, the idle processors in a generation 
is N-Xb-[Xa*N/Sx]*Sx, which is less than N-Xb in case 2). 
Then it still has Tet,3 ≤ Tet,2. 

If Sxt,i≤N, it means all the individuals in same 
generation are calculation by processors, then Tet,3=Tet,2. 

 
5. A semiconductor device synthesis example 
 

We have introduced the MDMS mode for device 
synthesis [15] to find parameters with desired electrical 
performances, which the simulator is PICSCES-2b. 

The test example is a 0.35µm FIBMOS device [16], 
which is composed of two parameterized structures: a 
fundamental MOSFET device structure (characterized by 
Leff, Tox, Xj, Nsd, Nsub, etc.) and a FIB implantation structure 
(characterized by X, Dose, and Energy). 

The device performance of FIBMOS includes on 
current (Ion), off current (Ioff), and dynamic output 
resistance (Rout). The device designables include lateral 
implantation position (X), dose, and energy. The device 
performance and designables are shown in Table 2, 3. 

 
Table 2 Device performance of FIBMOS  

Name Objective Unit 
Ion Maximum A 
Ioff Ioff≤1e-12 A 
Rout Rout≥1e5 Ω 

 
Table 3 Device designables of FIBMOS 

Name Min Max Unit 
X 0.05 0.30 µm 

Dose 2e13 2e18 cm-2 
Energy 10 200 Kev 

 
Table 4 Test results of device synthesis 

No. M k Rs, N=9 Rs, N=18 Ion,mean (A)
1 1 No 6.943 10.650 0.0036791
2 1 8.408 15.783 0.0038174
3 4 8.823 17.344 0.0038389
4 10 8.913 17.698 0.0038439
5 

3 

No 8.945 17.872 0.0038053
6 1 8.910 17.576 0.0038091
7 20 No 8.948 17.879 0.0037944
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Table 4 show the test results for different M and k(k=No 

means no migration), when M*Gn=120. For a deme, 
Sis=100, Ses=20, and mr=2%. Where Rs, N=9 and Rs, N=18 are 
speedups when N=9, 18 respectively, and Ion,mean is mean 
value for Ion. The tests are performed 5 times, respectively. 

In all the cases, the speedup for different processors and 
the quality of solution of MDMS are better than sGAs 
(case No.1). Large k produces large speedup, and the best 
speedup occurs when no migrations. The best result 
occurs when M=3, k=10, with acceptable speedup for 
different N. Users need to select appropriate parameters of 
MDMS, which provide large k*M, while with high quality 
solutions. Sometimes it needs a tradeoff according to their 
requirements. When M=20, the solution quality is not 
very well. For coarse-grained mode, If N=20 or more, Gn 
should be enlarged to ensure the acceptable solution 
quality, which will increase the calculation time and 
decrease the speedup simultaneously. 
 
6. Conclusion 
 

In this paper, the MDMS, i.e. MDGAs in master-slave 
mode is applied to fulfill simulation optimization. 

Since the demes are located on master processor, the 
parameters such as number of demes, population size, etc., 
can be well adjusted to provide higher quality results than 
in coarse-grained mode. 

Furthermore, for master-salve mode, since the demes 
are isolated between two migrations, which provide more 
active individuals, is proved that the speedup of the 
MDMS is superior to the sGAs and original MDGAs. 

It should be noticed that M*k has important effects, not 
only for the quality of solutions, but also for the speedup. 
One can adjust other parameters of the MDMS to provide 
a larger M*k in order to have larger speedup, while with 
acceptable quality for solutions. 

The device synthesis example shows that it is an 
efficient way to utilizing the superior performance on 
improving the utilization efficiency of processors and 
maintaining the quality of solutions, while eliminate the 
limitations of the coarse-grained parallel mode.  

The MDMS is very useful for the optimization for 
time-consuming system, such as TCAD, to reduce the 
total calculation time. 
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