
 1

Simulation Optimization with Multiple-demes Genetic Algorithms
in Master-Slave Parallel Mode

Xiaofeng Xie, Wenjun Zhang, Jun Ruan, Zhilian Yang

Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R. China
Email: xiexiaofeng@ tsinghua.org.cn

Abstract – Simulation optimization for complex space is realized by applying genetic algorithms (GAs) to searching the
optimum parameters that satisfying the desired characteristics. It is necessarily to use parallel calculation to obtain
satisfying results in a reasonable amount of time. The advantages and drawbacks of existing parallel calculation mode are
analyzed. Then the multiple-demes GAs in master-slave mode (MDMS) is proposed to make progress in not only the
quality of solutions but also the speedup for multiple-processors, when comparing to conventional master-slave mode,
while shows less limitations on the number of processors than that of coarse-grained and neighborhood mode. The test
example in semiconductor device synthesis shows the efficiency.
Key words: simulation optimization, parallel calculation, master-slave, multiple-demes genetic algorithms

1. Introduction

Integrating optimization routines into simulation

packages has become almost a necessity, in order to seek
improved settings of user-selected system parameters
with respect to the performance measure(s) of interest [1].

In simulation optimization, it is often consider that
simulation model as a “black box”, and the optimization
procedure uses the outputs from the simulation model
which evaluate the outcomes of the inputs that fed into the
model, and decides upon a new set of input values based
on the current and the past evaluations.

Recently, many studies using modern heuristic
techniques for simulation optimization have been
encountered [3-6]. The comparison [7, 8] shows genetic
algorithms (GAs) are converged faster than tabu search
(TS) and simulated annealing (SA), which makes it more
suitable for simulation optimization, because in most
cases, the major drawback of simulation for practical
applications is time-consuming. However, to solve some
complex problems, the computational requirements can
be extremely large because GAs may still require
hundreds or thousands of evaluations.

Fortunately, GAs is known as inherently parallelism [9].
Therefore, it is reasonable to use parallel calculation to
obtain satisfying results in a reasonable amount of time.

The key requirements in realizing parallel calculation
for simulation optimization include:1) it has high speedup
for different number of processors, while with high
quality of solutions; 2) it must be robust when network
failures are encountered between some processors.

The paper is organized as follows. Section 2 provides a
basic view for multi-demes GAs, and Section 3 analyzes
the drawbacks of existing parallel calculation models.
Section 4 studies the feasibility and speedup of
multiple-demes GAs in master-slave mode. Section 5

gives an example in semiconductor device synthesis to
show the efficiency of the methodology.

2. Multiple-demes GAs (MDGAs) [10]

2.1 Algorithm description

For multiple-deme GAs, the population is partitioned

into a number of isolated demes, each one of which
evolves independently, trying to optimize the same
function. Typically, a rings-type neighborhood structure
(Fig. 1) is defined over this set of demes, so that each
deme swaps some good individuals with its neighbors in a
given rate. This swapping activity is called migration.

deme

deme

deme deme

deme

deme

Fig. 1. Rings-type neighborhood structure

Fig 2 shows the principle of standard GAs (sGAs) in

each deme, which is considered as an evolved population.
For each generation, the population is evolved by genetic
operations, such as mutation, crossover, etc., and updated
by replacing some individuals.

population (Initial individuals)

Evolved individuals

Genetic operations Replacement

Fig. 2. Principle diagram of sGAs in a deme

Me
Chinese Journal of Electronics, 2003, 12(2): 254-258

 2

The relation of solution quality with the evolution

generations Gn is mainly affected by the number of demes
M, and for each deme, the sub-population size Sis, and
evolved individuals in each generation Ses, interval
generation of migration k, migration rate mr. For the
convenience of comparison, the initial sub-populations in
different demes use same individuals. The total number of
individuals needed to be evaluated during the evolution
process is equal to Sis+ Gn*Ses*M.

2.2 Performances of MDGAs

From the previous studies [10-12], the MDGAs have an
appealing trait in that they often provide high quality
solutions than sGAs, with several striking characteristics:
1) its decentralized search, which allows speciation
(different demes evolve towards different solutions); 2)
the larger diversity levels (many search regions are sought
at the same time); 3) an intensive exploration performed
by all the demes; and 4) exploitation inside the demes, i.e.,
refining the better partial solutions found at any moment.

Migration policy is an important design factor, due to
two reasons: 1) enhances the number of samples with high
fitness in each deme to speed up evolution, so the frequent
migrations induce fast convergence; 2) introduces new
genes into each deme, so reasonable migrations enhance
the diversity of demes to fighting premature convergence,
while in the same time, it blends the genes with the cycle
M*k, i.e. frequent migrations will decrease the diversity of
demes. “Considerable isolation” [11] is very important.

To make an intuitionistic view, a test based on a
nonlinear function G9 [13] is used to show the typical
properties of MDGAs. The parameter F=Log(Fcalc-Fopt) is
used to describe the convergence quality. Where Fcalc
represents the mean value of the best evolution results
(here we perform calculation 100 times), and Fopt is the
optimum value. For MDGAs, Sis=100, Ses=20, mr=2%, Gn
=300. Fig. 3 shows the relations between F and Gn/k (i.e.
migration times), when M=3, 10.

0 50 100 150 200 250 300
-0.6

-0.3

0.0

0.3

0.6

0.9

 M = 3
 M = 10

F

Gn/k

Fig. 3. F versus Gn/k, when Gn=300

The bound case that Gn/k=300 is equivalent to a single

large population approximately, and the bound case that
Gn/k=1 means no migration occurs among demes.

It can be found: 1) with appropriate migration times,
the multiple-demes algorithm can get better convergence
quality than the above bounding cases; 2) the quality of
solution is more stable for large M with high frequent
migrations, which is due to the slowly blending of genes.

Fig. 4 shows the relations between F and M, where
M*Gn=3000, k =10. For M=1, it represents a sGAs. It can
be found that the best F occurs with appropriate M and Gn,
since F is decreased when M or Gn is increased.

0 20 40 60 80 100

-0.5

0.0

0.5

1.0

1.5

F

M

Fig. 4. F versus M, when M*Gn=3000

The superior of MDGAs can be explained by

shifting-balance theory [14]. This began with the idea that
interactions among loci could result in populations
achieving a genotypic state that was locally relatively fit
(a ‘peak’), but was not as fit as possible because of
intervening unfit genotypes (‘valleys’). It suggested
several mechanisms by which evolution might allow a
population to reach higher adaptive peaks, including
novel favorable mutations, relaxation of selection,
qualitative changes in the environment.

Overall, one may conclude that the multiple-deme
model is well suited to observe the well-balanced role of
diversification and intensification during the search
process. Each deme might be seen as intensification in a
particular region and a great number of demes provide
some diversification in the global space.

3. Parallel calculation mode[10-12]

The parallel GAs (PGA) has been implemented by
several ways, that is, coarse-grained, neighborhood and
master-slave mode, which are the classification according
to the connection topology of multi-processors.

To ensure the reduction of calculation time, the total
number of individuals had better not be increased. As
shown in Fig. 4, in order to provide high quality results,
the parameters of PGAs, such as number of demes,
population size, etc., should be well adjusted.

However, for coarse-grained PGAs, the number of
demes is equal to the number of processors. For

 3

neighborhood PGAs, the population size is multiple of the
number of processors. The additional limitations will
enhance the difficulty to find high quality solutions.

Moreover, for coarse-grained and neighborhood PGAs,
the neighboring processors will swap information, which
makes the demes should be evolved synchronously. Then
it needs to wait for the slowest processor. For the worst
case, the system will be stopped if any network failure is
encountered between the processors.

The master-slave mode can avoid the above drawbacks
of coarse-grained and neighborhood mode. And they
have many advantages: 1) be easily to implement, and
significant reduction for calculation time are possible,
especially when communication time can be neglected; 2)
provide an ability to balance the speed difference between
processors by allocating the individuals to idle processors,
even network failure occurs between master and slaves.

However, some key drawbacks of the conventional
master-slave mode should to be emphasized: 1) it is based
on sGAs, which provide lower quality solutions; 2) the
communication time and the unbalanced load among
processors may reduce the speedup.

4. Multiple-demes GAs in master-slave mode (MDMS)

 As shown in Fig. 5, a scheduler in master side will be
used to collect all active individuals in the demes of
MDGAs, and deliver each individual to be calculated by
the simulation model in any idle slave processor. An
active individual means it is independently to other
individuals that will be delivered to the slaves.

Slaves

Active
individuals
scheduler

...
individual

individual

individual

Master

MDGAs

deme processor

Fig. 5. The concept of MDMS

4.1 Feasibility from the effect of communication time

For the parallel calculation of simulation optimization,
the evolution of an individual includes genetic operations,
network communication, and simulation to evaluate the
fitness. The simulation is often time-consumption, so the
time for communication and genetic operations can be
neglected. For an example, a typical device simulation by
costs several minutes, while the communication time in
local area network costs only several seconds, and the
genetic operations costs only several milliseconds.

4.2 Speedup estimation

Suppose there have N processors are used to realize the
parallel calculation for simulation optimization, and each
individual finishes its simulation in same time T.

As shown in Table 1, three type of GAs are compared,
where Mx is an integer and is large than 1, Gx can be
divided exactly by Mx. The total number of evolved
individuals Set is same, which is equal to Sx*Gx. For case
3), the interval generation of migration is k.

Table 1. Different GAs to be compared

Cases M Ses Gn
1. sGAs(S) 1 Sx Gx
2. sGAs(L) 1 Sx*Mx Gx/Mx
3. MDGAs Mx Sx Gx/Mx

For the convenience of discussion, we define a function

{x} to represent the minimum integer that not less than x

 {x}
integeran not is x if

integeran is x if
1][

][





+
=

x
x

where [x] means the integer part of x.
For master-slave mode, if there have St’ individuals that

are independently to each other to be simulated at
different N processors, then the calculation time
TIt=T*{St’/N}. Because the probability of that St’ can
divide exactly N is only 1/N, for most case, some
processors will be idle in the last stage.

For GAs, the evolution process is a Markov chain,
which the current generation is effected by the previous
generation. Only the individuals in same generation are
independently to each other. The real calculation time is

 TRt = Ti+Tet
Where Ti= T*{Si/N} and Tet are the calculation time for
initial and evolved individuals, respectively.

The speedup for parallel GAs is defined as
 Rs = Ts/TRt (1)

where Ts is the calculation time for the serial version.
 Since Ti is same for the GAs to be compared, in order to
estimate the differences of the calculation time for
different GAs, only Tet is needed to be discussed. The
minimum calculation time for all the evolved individuals
Tet,min= T*{Set/N} occurs when they are all independent to
each others, such as in random search.

For case 1), the calculation time is
Tet, 1 = {Sx/N}*Gx*T (2)

Suppose Sx=Xa*N+Xb, where Xa=[Sx/N], Xb=Sx%N is
the modulus. Then

 Tet, 1/T = Xa*Gn+{Xb/N}*Gn
If Xb≠0, then

Tet, 1/T = Gx*(Xa+1)
Since Ts,et/T = Sx*Gx, then from (1), the speedup for

evolved individuals Rs, et is
 Rs, et = Ts,et/Tet, 1=N-(N-Xb)/(Xa+1) (3)

 4

If Xa is small, i.e. Sx is small, then Rs,et may be small and
unstable for large N.

For case 2), the calculation time is
Tet, 2 = {Sx*Mx/N}*Gx*T/Mx (4)

For case 3), Fig. 6 shows the evolved individuals of k
generations between the interval of two migrations for
multiple-demes GAs, where Sx,i,j represents the evolved
individuals at jth deme in ith generation.

For the same generation, the individuals in all the Mx
demes are actively, which can be sending to the scheduler
for parallel calculation immediately.

Moreover, the demes are isolated to each others, so the
individuals in different demes are independently. If the
individuals in Sx,i,j have been calculated, after few time for
genetic operations, the individuals in next generation
Sx,i+1,j are actively and can be deliver to the scheduler for
parallel calculation.

Sx,i,1 Sx,i,2

Sx,i+1,2 Sx,i+1,2

Sx,i+k,2 Sx,i+k,2 Sx,i+k,Mx

Sx,i+1,Mx

migration
generation

migration
generation

...

Sx,i,...

Sx,i+1,...

Sx,i+k,...

...

...

Sx,i,1 Sx,i,2

Sx,i+1,2 Sx,i+1,2 Sx,i+1,Mx

Sx,i,...

Sx,i+1,...

Sx,i,Mx

...
calculated
individuals

active
individuals

inactive
individuals

...

Fig. 6. The evolved individuals between two migrations

For the ith generation, the number of individuals

Sxt,i=Mx*Sx, which are all active. Suppose Sxt,i=Xa*N+Xb,
where Xa=[Sxt,i/N], Xb=Sxt,i%N. Then as shown in Fig. 6,
after Xa times parallel calculations, totally Xa*N
individuals are calculated, then there have [Xa*N/Sx]
demes in next generation are actively. For the Xa+1 times,
there have Xb+[Xa*N/Sx]*Sx active individuals. In order to
avoid idle processors, it only needs to satisfy

 N ≤ Xb+[Xa*N/Sx]*Sx (5)
i.e. Sxt,i-N ≥ Sx*{Xb/Sx}-Xb.
Suppose Xb=Xc*Sx+Xd, where Xc=[Xb/Sx], Xb=Xb%Sx.

Then we should have
 Sxt,i-N ≥ Sx*{Xd/Sx}-Xd (6)
If Sxt,i>N, then Sxt,i-N≥Xb. To make (6) exists, it needs
 Xb ≥ Sx*{Xd/Sx}-Xd
i.e. 2Xd ≥ Sx*{Xd/Sx}-Xc (7)
Since Sx ≥ Sx*{Xd/Sx}-Xc. To make (7) exists, it needs
 2Xd ≥ Sx (8)
Since Sx*{Xd/Sx} ≤ Sx, with (8), it has
 Sx/2 ≥ Sx*{Xd/Sx}-Xd (9)
With (6) and (9), if Sxt,i-N ≥ Sx/2, then (5) come into

existence. It means enough active individuals in i+1
generation can be delivered to the idle processors.
Analogically, it means that all the individuals in the

interval generations between two adjacent migration
generations can be seemed as whole independently to
each others. The number of independent individuals is
equal to k*Mx*Sx, then calculation time is

Tet,3 = [Gx/(k*Mx)]*{ k*Mx*Sx/N}*T
+{((Gx/ Mx)%k)* Mx*Sx/N}*T (10)

Since for any integer a≥0 and any float x≥0, it has
 {ax} ≤ a*{x}
Then from (2), (4), (10), we have Tet,3 ≤ Tet,2 ≤ Tet,1.
When k=1, then Tet,3=Tet,2; and when no migration

occurred during the evolution, then Tet,3=Tet,min.
If 0≤Sxt,i-N≤Sx/2, the estimation for calculation time are

complicated. However, the idle processors in a generation
is N-Xb-[Xa*N/Sx]*Sx, which is less than N-Xb in case 2).
Then it still has Tet,3 ≤ Tet,2.

If Sxt,i≤N, it means all the individuals in same
generation are calculation by processors, then Tet,3=Tet,2.

5. A semiconductor device synthesis example

We have introduced the MDMS mode for device
synthesis [15] to find parameters with desired electrical
performances, which the simulator is PICSCES-2b.

The test example is a 0.35µm FIBMOS device [16],
which is composed of two parameterized structures: a
fundamental MOSFET device structure (characterized by
Leff, Tox, Xj, Nsd, Nsub, etc.) and a FIB implantation structure
(characterized by X, Dose, and Energy).

The device performance of FIBMOS includes on
current (Ion), off current (Ioff), and dynamic output
resistance (Rout). The device designables include lateral
implantation position (X), dose, and energy. The device
performance and designables are shown in Table 2, 3.

Table 2 Device performance of FIBMOS

Name Objective Unit
Ion Maximum A
Ioff Ioff≤1e-12 A
Rout Rout≥1e5 Ω

Table 3 Device designables of FIBMOS

Name Min Max Unit
X 0.05 0.30 µm

Dose 2e13 2e18 cm-2
Energy 10 200 Kev

Table 4 Test results of device synthesis

No. M k Rs, N=9 Rs, N=18 Ion,mean (A)
1 1 No 6.943 10.650 0.0036791
2 1 8.408 15.783 0.0038174
3 4 8.823 17.344 0.0038389
4 10 8.913 17.698 0.0038439
5

3

No 8.945 17.872 0.0038053
6 1 8.910 17.576 0.0038091
7 20 No 8.948 17.879 0.0037944

 5

Table 4 show the test results for different M and k(k=No

means no migration), when M*Gn=120. For a deme,
Sis=100, Ses=20, and mr=2%. Where Rs, N=9 and Rs, N=18 are
speedups when N=9, 18 respectively, and Ion,mean is mean
value for Ion. The tests are performed 5 times, respectively.

In all the cases, the speedup for different processors and
the quality of solution of MDMS are better than sGAs
(case No.1). Large k produces large speedup, and the best
speedup occurs when no migrations. The best result
occurs when M=3, k=10, with acceptable speedup for
different N. Users need to select appropriate parameters of
MDMS, which provide large k*M, while with high quality
solutions. Sometimes it needs a tradeoff according to their
requirements. When M=20, the solution quality is not
very well. For coarse-grained mode, If N=20 or more, Gn
should be enlarged to ensure the acceptable solution
quality, which will increase the calculation time and
decrease the speedup simultaneously.

6. Conclusion

In this paper, the MDMS, i.e. MDGAs in master-slave
mode is applied to fulfill simulation optimization.

Since the demes are located on master processor, the
parameters such as number of demes, population size, etc.,
can be well adjusted to provide higher quality results than
in coarse-grained mode.

Furthermore, for master-salve mode, since the demes
are isolated between two migrations, which provide more
active individuals, is proved that the speedup of the
MDMS is superior to the sGAs and original MDGAs.

It should be noticed that M*k has important effects, not
only for the quality of solutions, but also for the speedup.
One can adjust other parameters of the MDMS to provide
a larger M*k in order to have larger speedup, while with
acceptable quality for solutions.

The device synthesis example shows that it is an
efficient way to utilizing the superior performance on
improving the utilization efficiency of processors and
maintaining the quality of solutions, while eliminate the
limitations of the coarse-grained parallel mode.

The MDMS is very useful for the optimization for
time-consuming system, such as TCAD, to reduce the
total calculation time.

REFERENCES

[1] Fu M C, Andradottir S, Carson J S, et al. Integrating optimization

and simulation: research and practice. Proceedings of the Winter

Simulation Conference. 2000: 610-616

[2] Glover F, Kelly J P, Laguna M. New advances and applications of

combining simulation and optimization. Proceedings of the Winter

Simulation Conference. 1996: 144-152

[3] Paul R J, Chanev T S. Simulation optimization using a genetic

algorithm. Simulation Practice and Theory. 1998, 6(6): 601-611

[4] Azadivar F, Tompkins G. Simulation optimization with qualitative

variables and structural model changes: a genetic algorithm

approach. European J. Operational Research. 1999,113(1): 169-182

[5] Dengiz B, Alabas C. Simulation optimization using TABU search.

Proceedings of the Winter Simulation Conference. 2000: 805-810

[6] Haddock J, Mittenthal J. Simulation optimization using simulated

annealing. Computers and Industrial Engineering. 1992, 22(4):

387-395

[7] Youssef H, Sait S M, Adiche H. Evolutionary algorithms simulated

annealing and tabu search: a comparative study. Engineering

Applications of Artificial Intelligence. 2001, 14(2): 167–181

[8] Hasan M, AlKhamis T, Ali J. A comparison between simulated

annealing, genetic algorithm and tabu search methods for the

unconstrained quadratic Pseudo-Boolean function. Computers and

Industrial Engineering. 2000, 38(3): 323-340

[9] Holland J H, Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, 1975

[10] Cantú-Paz E, Goldberg D E. Efficient parallel genetic algorithms:

theory and practice. Computer Methods in Applied Mechanics and

Engineering. 2000, 186(2): 221-238

[11] Alba E, Troya J M. Influence of the migration policy in parallel

distributed GAs with structured and panmictic populations. Applied

Intelligence. 2000, 12(3): 163–181

[12] Kohlmorgen U, Schmeck H, Haase K. Experiences with

fine-grained parallel genetic algorithms. Annals of Operations

Research. 1999, 90: 203–219

[13] Michalewicz Z, Schoenauer M. Evolutionary algorithms for

constrained parameter optimization problems. Evolutionary

Computation. 1996, 4(1): 1-32

[14] Wright S. Evolution in Mendelian populations. Genetics. 1931, 16:

97–159

[15] Li Z, Xie X F, Zhang W J, Yang Z L. Realization of Semiconductor

Device Synthesis with the Parallel Genetic Algorithm. Asia and

South Pacific Design Automation Conference. 2001: 45 – 49

[16] Shen C C, Murguia J, Goldsman N, et al. Use of focused-ion-beam

and modeling to optimize submicron MOSFET characteristics.

IEEE Trans. Electron Devices, 1998, 45(2): 453-459

