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Abstract. Social cognitive optimization (SCO) is a simple behavioral model 
based on human social cognition. By formalizing the fundamental social cogni-
tive agent, the single-agent and multiagent models of SCO are studied. After re-
alizing the goodness evaluation, the experiments results of SCO are compared 
with existing results on five engineering design problems, which show that 
SCO can get high-quality solutions efficiently, even by the single-agent model. 

1 Introduction 

The engineering optimization problem [ 8,  19] can be defined as finding x ∈S: 

Miniminze : ( )
Subject to:  ( ) 0   (1 , )j

f x
g x j m j


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where x = 1( ,..., ,..., )d Dx x x  ( 1 d D≤ ≤ , d ∈ ), [ , ]d d dx l u∈  can be continuous or 
integer variable, dl  and du  are lower and upper boundary values, respectively. f( x ) 
and gj( x ) are objective function and constraints, respectively. S is a D-dimensional 
search space, which includes the set of possible x . 

With the gain of adaptability to the problem at hand, in combination with global op-
timization characteristics and robust performance, the idea of applying the principle of 
natural evolution to artificial adaptive systems has seen impressive growth [ 2,  12,  14]. 

Swarm systems, such as bird flock, are products of natural evolution. The complex 
collective behavior can emerge from a society of autonomous cognitive entities, called 
as agents [ 6,  10,  20], following simple rules operated on a symbolic space. Symbols 
provide the mechanism that allows for cognitive problem solving [ 1] by enabling 
agents storing knowledge [ 16] in their memory [ 18] for guiding future actions. Each 
agent acquires knowledge in a mix of two complementary ways [ 7,  13]: a) individual 
learning [ 20], which performs reinforced practice to its own experience; b) social 
learning [ 3], which allows one to benefit from the successful sharing experiences, with 
a “head start” [ 11]. For the behavioral models based on the concepts of swarm, each 
x S∈  is a knowledge point, and its goodness is evaluated by the goodness function 
F( x ), which a typical example is particle swarm optimization (PSO) [ 15]. 

Social interaction plays the key role for the collective behavior [ 6,  15]. However, 
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for most animals, the knowledge is often adhered to each agent. Hence an agent can 
hardly benefit from social learning when few other agents are observable. 

Language is perhaps the most interesting trait of humans [ 17]. The powerful symbol 
processing capability allows for cognition on a grand scale, since individual can ac-
quire information that is no longer limited to direct observation [ 11].  

Social cognitive optimization (SCO) [ 21] is a simple model based on human social 
cognition [ 3,  5,  11]. In this paper, SCO is formalized from the viewpoint of agent-
based modeling (ABM) [ 6]. In section 2, the single-agent and multiagent models of 
SCO are studied. In section 3, the goodness evaluation methods for engineering design 
problems are described. In section 4, the experimental results on five problems are 
compared with existing results [ 8,  19]. In the last section, we conclude the paper. 

2 Social cognitive optimization (SCO) 

For human, the extrasomatic arbitrary symbols that manipulated by language are effi-
cient means of knowledge transfer and storage. Human cognition can easily benefit 
from social learning, since the sharing experiences can be available from the forma-
tion of symbols, instead of from direct observing other persons. Furthermore, selective 
social learning on success experiences enables human to form patterns of behavior 
quickly by avoiding time-consuming trial-and-error [ 11]. In addition, such capabilities 
allow one to explore activities for the attainment of new knowledge that would nor-
mally be out of reach due to constraints on time and resources. The individual learning 
then only plays secondary role due to the ubiquity and efficiency of social learning [ 3]. 

SCO is based on human cognition. Firstly, as the fundamental element, the social 
cognitive (SC) agent is formalized; secondly, it works in the single agent model 
(SAM); thirdly, the original SCO version is represented by a full sharing multiagent 
model (FSM); then a partial sharing multiagent model (PSM), which is similar to the 
real world cases, is realized for reducing the probability of the premature convergence. 

2.1 Social Cognitive (SC) Agent 

The foundational entity for simulating human cognition is social cognitive (SC) agent. 
Each SC agent includes a memory (MD) and a set of action rules (RA). The cognition is 
realized by interplaying between learning and memory [ 18], which the MD is em-
ployed for storing the NM knowledge point(s) to guide future actions, and learning 
behaviors are achieved by executing RA for acquiring memory. As a frugal version, NM 
is fixed as 1. Specially, the agent acquires social sharing information (called I) not 
only from the MD of other agents, but also from the medium, called library (L), which 
stores NL points. The collection of knowledge in its MD and I, i.e. all the accessible 
knowledge for the agent, is defined as knowledge pool (K), which the size is NK. 

Each agent is worked in iterated learning cycles. Suppose T is the number of maxi-
mum learning cycles. At the tth (1 ,t T t≤ ≤ ∈ ) learning cycle, the MD stores the 
most recently knowledge point ( )tx . The knowledge point with best goodness value in 



its K is defined as ( )tg , and then the goal is to find ( )Tg  with good enough goodness. 
For the convenience of discussion, a tournament-selection(NUM, STATE, SET) 

function is defined as following: a) constructs the sample set X: select NUM different 
points from SET at random; b) returns the point with the STATE goodness in the X. 

The action rules (RA) for selective social learning on success experiences include:  
a) Selects a successful knowledge point: =tournament-selection ( , , )BB best Iτκ ;  
b) Infers a new knowledge point ( 1)tx +  around ( )tx  and Bκ . For the dth dimension: 

( 1)
, ,( , )t

d R d B dx U X X+ =  (2) 

where U ( a, b) is a random value within [a, b], and normally , , ,2B d M d R dX X X= ⋅ − . 

Here if ( )( ) ( )t
BF F xκ ≤ , then M BX κ= , ( )t

RX x= , else R BX κ= , ( )t
MX x= . 

Besides, it is essential to ensure that ( 1)tx S+ ∈ . Hence for equation (2), if ,B d dX l< , 
then ,B d dX l= , if ,B d dX u> , then ,B d dX u= . 

c) Stores ( 1)tx + into MD, and pushes its old ( )tx into L. 
To keep the constant library size, the redundant points, which each point is selected 

as =tournament-selection ( , , )WW worst Lκ τ  in sequence, are discarded from L at the 
end of each learning cycle. 

The default values of Bτ  and Wτ are 2 and 4, respectively. 

2.2 Single-agent model (SAM) 

As shown in figure 1, the SC agent in SAM communicates with a library, which is 
also exactly the I. Here the K concludes the knowledge points in its MD and L. 
 

 
Fig. 1. Single-agent cognitive model 

 
The total evaluation times of SAM are TE=NL+1+T. 
If B LNτ = , then Bκ is always the best point in L, it is easy to prove that 

( )|| ||t
B xκ − will be damped quickly as t increasing. If NL> Bτ , then the agent is refer-

ring to multiply points. If 1B Wτ τ= = , then the trajectory of agent should be in chaos. 
However, if Bτ >1, then only successful points are referred, and if Wτ >1, then the L is 
under elitist selection, hence the ( )tg will be improved by reinforcement learning on 
successful points. Here NL controls the trade-off between exploitation and exploration. 
Notes the intermediate ( )tx can be temporal badly, which may benefit for long-term 



performance. Besides, similar to the case L BN τ= , the variation of ( )tx will be small as 
the diversity of the successful points in L becomes small along with learning cycles. 

By considering L as an external memory for the agent, the successive dynamics of 
( )tx  in SAM can also be considered as simplified thinking process [ 3]. 

2.3 Full sharing multiagent model (FSM) 

A simple multiagent model is sharing of a library by a society with N agents, as shown 
in figure 2. The K for all the agents is same, which includes the knowledge points in 
all the MD and L. Foe each agent, its I is points in K that except for its own MD. 

 

 
Fig. 2. Full sharing multiagent model 

For each learning cycle, each agent in FSM performs their action rules as SAM in 
turn. At the end of each learning cycle, totally N obsolete points are discarded from L. 

The total evaluation times are (1 )E LT N T N= + + ⋅ . The FSM is equivalent to the 
original SCO version [ 21]. And if N=1, then it becomes the SAM.  

Since all the intermediate knowledge points are updated into the L, the diversity of 
knowledge points in K may be decreased too fast to induce premature convergence. 

2.4 Partial sharing multiagent model (PSM) 

For real world cases, the size of social sharing knowledge points is very large, and 
each agent in a society can only access a part of them. Internet is a typical example. 
 

 
Fig. 3. Partial sharing multiagent model 

 
As shown in figure 3, the blackboard (B) serves as a central data repository, which 

the size is NB. The communication among the agents happens through their actions for 
modifying the B. Each agent has own library and allows a specified thinking time (TT) 
for learning deliberately. For simplicity, all the agents have same NL and same TT. 



When 1t Tt n T= ⋅ +  (0 / , )t T tn T T n≤ ≤ ∈ , each agent updates its L by selecting NL 
knowledge points from B at random. Then each agent performs as an SAM with its 
MD and L as 1 ( 1)t T t Tn T t n T⋅ + ≤ ≤ + ⋅ . After the ( 1)t Tt n T= + ⋅  cycle is finished, each 
agent only updates the point with best goodness value in its K into B. 
 For PSM, the total evaluation times are E BT N T N= + ⋅ . 

3 Goodness Function for Engineering Design Problems 

The goodness function F( x ) is employed for evaluating the goodness of each knowl-
edge point x . For engineering design problems, the most frequently parts encountered 
are the handling for the constraints and integer variables. 

3.1 Constraint Handling 

The basic goodness function is defined as ( ) ( ), ( )OBJ CONF x F x F x=< > , where 

( ) ( )OBJF x f x= and 
1

( ) ( )
m

CON j j
j

F x r G x
=

= ∑  are the goodness functions for objective 

function and constraints, respectively, rj are positive weight factors, which default 
value is 1, and ( ) max(0, ( ))j jG x g x= . 

To avoid adjusting penalty coefficient [ 8], and to follow the criteria by Deb [ 9], the 
goodness evaluation is realized by comparing any two points Ax , Bx : 

( ) ( )  OR
( ) ( ) when 

( ) ( ),  ( ) ( )
CON A CON B

A B
OBJ A OBJ B CON A CON B

F x F x
F x F x

F x F x F x F x
<

≤  ≤ =
 (3) 

3.2 Integer Variable Handling 

Some engineering design problems may be mixed-integer-continuous problem, which 
some variables are integer variables. 

The SCO can handle with continuous variables only. However, extending it for in-
teger variables is rather easy. The discrete space is mapping into a continuous step 
function, i.e. ( ) ( ')F x F x= , where for the dth dimension, ' ( )d dx INT x= , and INT() is 
a function for converting a real value to a closest integer value. 

4 Experimental Results 

Five engineering design problems [ 8,  19] have been tested in order to study the per-
formance of SCO. They are speed reducer (SR), three-bar truss (TB), welded beam 
(WB), tension spring (TS), and pressure vessel (PV) design problems. The last two 



problems, i.e. TS and PV, are mixed-integer-continuous problems. Table 1 summaries 
the global optimum F* and the existing results [ 8,  19] by other algorithms, include the 
mean values ( BF ) and the evaluation times (TE). 

Table 1.  Global optimum and existing results [ 8,  19] for engineering design problems 

F. F* FB TE 
SR 2994.471 2998.027 [ 19] 110235 [ 19] 
TB 263.8958 263.8989 [ 19] 36113 [ 19] 
WB 2.38113 2.96070 [ 19] 64862 [ 19] 
TS 0.012666 0.012923 [ 19] 25167 [ 19] 
PV 6059.714 6263.793 [ 8] 50000 [ 8] 

 
When t=0, all the knowledge points are initialized at random in the S. The testing 

results of different versions of SCO are mean goodness results in specified evaluation 
times, which 500 runs were performed for each problem. 

Table 2 gives the mean results ( )T
BF  by the SAM, which T=2E4, the sizes of NK are 

40, 120, 200, and 280, respectively. It means the evaluation times TE are 20040, 
20120, 20200, and 20280, respectively. When NK is large than 40, the SAM gets better 
results for the first three continuous design problems, i.e. SR, TB, and WB, but gets 
worse results for the two problems with integer variables than the existing results in 
table 1. The highly adaptivity for small N provides great flexibility than PSO [ 15]. 

Table 2.  Mean results by SAM, where T=20000 

F. NK=40 NK=120 NK=200 NK=280 
SR 2994.471 2994.471 2994.471 2994.471 
TB 264.0311 263.8977 263.8972 263.8969 
WB 3.80066 2.61903 2.47514 2.44056 
TS 0.01432 0.01377 0.01365 0.01365 
PV 6702.254 6589.230 6531.708 6468.242 
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Fig. 4. The trajectory examples of the agent in SAM, where T=100, and: a) NK=40; b) NK =280 

 
To demonstrate the characteristics of SC agent in SAM, figure 4 give the trajectory 

examples of the agent in 100 learning cycles, for the TB problem, which the sizes of 



NK are 40 and 280, respectively. The pentacle indicates the location of the global op-
timum point *x . It shows that the small NK (=40) facilitates the exploitation, i.e. the 
local search capability while the large NK (=280) facilitates the exploration, i.e. the 
global search capability. Besides, the agent is mainly interested in the promising part 
of S, by referring to the multiply successful knowledge points in the library. 

Table 3 gives the mean results ( )T
BF  by the FSM, which N=40, T=500, and the sizes 

of NL/N are 2, 4, and 6, respectively. It means TE is 20120, 20200, and 20280, respec-
tively. It can be found that the FSM can get better results than SAM in same evalua-
tion times. However, it still gets worse results for the two problems with integer vari-
ables than the existing results in table 1. Since for the mapped step landscape, the 
goodness values for all the points at a same step are same. As the learning cycles goes 
on, many intermediate points at the same step with ( )tg will be prosperously in the 
knowledge pool K, and induce the FSM to be converged prematurely. 

Table 3.  Mean results by FSM, where N=40, T=500 

F. NL=2N NL=4N NL=6N 
SR 2994.471 2994.471 2994.478 
TB 263.8970 263.8970 263.8967 
WB 2.47458 2.42723 2.42162 
TS 0.01346 0.01344 0.01342 
PV 6460.137 6457.597 6456.929 

 
Table 4 gives the mean results ( )T

BF  by the PSM of SCO, which N=40, NL=39, 
T=500, TT=15, and the sizes of NB/N are 3, 5, and 7, respectively. It means TE is 20120, 
20200, and 20280, respectively. For the SR problem, the PSM shows worse results 
than SAM and FSM due to its slower convergence. However, it can get better results 
for all the design problems than the existing results in table 1. Since the intermediate 
knowledge points during the TT are no longer allowed to guide the actions of agents, 
the probability of premature convergence is decreased.  

Table 4.  Mean results by PSM, where N=40, NL=39, T=500, TT=15 

F. NB=3N NB=5N NB=7N 
SR 2994.600 2995.407 2997.403 
TB 263.8962 263.8963 263.8966 
WB 2.38508 2.39042 2.40589 
TS 0.01284 0.01283 0.01287 
PV 6259.600 6242.481 6236.937 

5 Conclusions 

Human beings have shown higher adaptability than other animals, since the extra-
somatic symbolic capability by language allows social learning and cognition in rather 
convenient forms, even for only a single individual. 



The SCO is based on human cognition. From the viewpoint of agent-based model-
ing, its fundamental element, called social cognitive agent, learns knowledge by action 
rules according to the experience in its own memory and social sharing information, 
which not only from the memory of other agents, but also from the medium of knowl-
edge, called library. Several models, include SAM, FSM, and PSM, were presented. 
Then the goodness evaluation methods are realized after handling with the constraints 
and the discrete variables.  

The SCO is a simple algorithm with few control parameters that can be readily ad-
justing. Firstly, the number of agents (N) can be adjusted flexibly. Moreover, the trade-
off between exploitation and exploration can be achieved by adjusting the size of 
library (NL) while no significant impacts on the total evaluation times, which is deter-
mined by the N and the learning cycles (T). 

The experiments results of SCO on five benchmark functions have compared with 
existing results. It shows that even SAM can get high quality solutions on three prob-
lems with suitable library size. Moreover, the cooperating models, include FSM and 
PSM, are performed better than SAM for most testing cases. For the mixed-integer-
continuous problems, the PSM shows better performance than SAM and FSM, which 
reduces the probability of the premature convergence by preventing some intermediate 
knowledge points from guiding the actions of agents. At last, the PSM performs better 
than two existing algorithms for all problems in fewer evaluation times. 
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