
A Compact Multiagent System based on Autonomy Oriented Computing

Xiao-Feng Xie, Jiming Liu
Department of Computer Science
Hong Kong Baptist University

Kowloon Tong, Hong Kong
{xfxie, jiming}@comp.hkbu.edu.hk

Abstract

A compact multiagent optimization system (MAOSC)
based on autonomy oriented computing (AOC) is
presented. Performed by a society of autonomous entities
in iterative cycles, an optimization algorithm can simply
be described by a macro generate-and-test behavior,
which deploys a few elemental generating behaviors
under conditioned reflex behaviors supported by a testing
operation library. MAOSC provides a simple framework
for not only realizing and comparing algorithms, but also
deploying evolvable algorithms. The experimental results
of MAOSC cases on benchmark functions are compared
with those of other algorithms, which show its efficiency.

1. Introduction

Problems which involve numerical optimization are
ubiquitous throughout scientific communities. A general
numerical optimization problem F can be defined as:

Miniminze : ()f x
�

 (1)

where f is an objective function, x
�

= 1{ ,..., ,..., }T
d Dx x x and

search space (S) is a D-dimensional space bounded by all
parametric constraints xd∈ [dx , dx]. Suppose for a certain

solution *x
�

, there exists *() ()f x f x≤� �
 for Dx S∀ ∈ ⊆�

� ,

then *x
�

 and *()f x
�

 are the global optimum solution and
the optimum value, respectively. The solution space is
defined as *{ | () () }O OS x f x f x ε= − ≤� � �

, where 0Oε ≥ is a
small value. Normally, SO/S is quite small. As a goal for
finding Ox S∈� with high probability, typical challenges
include: a) little a priori knowledge is available for each
problem; and b) total computational resource is bounded.

Agent-based methods have been developed in the last
few years [4][18][23], where each agent is an entity
featured by knowledge as the medium and the principle of
rationality as the law of behavior [20].

Autonomy oriented computing (AOC) methods [18]
address the modeling of autonomy in the entities of a
complex system and the self-organization of them in
achieving a specific goal, which is suitable for solving
hard computational problems. The complex system

behaviors can emerge from the interactions of individual
entities following simple behaviors [12][16][17][28].

Under the framework of autonomy oriented computing
(AOC), an optimization algorithm can be described by a
specific generate-and-test behavior, which is performed by
every autonomous entity in iterative cycles. The law of
behavior is fast-and-frugal heuristics [9], which makes a
tradeoff on generality [29] versus specificity and avoids
the trap from specificity by their very simplicity so as to
generalize well to new situations [26]. Comparing with
existing algorithmic frameworks [19][25][30], AOC-
based optimization system addresses the capability for
deploying evolvable algorithms as well as the capability
for realizing and comparing algorithms.

The paper is organized as follows. In Section 2, the
compact multiagent optimization system (MAOSC) based
on AOC is presented. In Section 3, the macro generate-
and-test behavior, which is the essential behavior of each
agent, is described. With the conditioned reflex behaviors
provided by a testing operation library, users may focus
on realizing elemental generating behaviors. In Section 4,
a specific macro generate-and-test rule is implemented,
where three generating rules are extracted from existing
algorithms [3][14][24]. In Section 5, the MAOSC cases
are applied on benchmark functions, and the experimental
results are compared with those of existing algorithms
[10][22][31]. In the last section, this paper is concluded.

2. Compact multiagent optimization system

MAOSC is a compact problem solver with the specific
structure and operating mechanism based on AOC.

MAOSC runs in iterative cycles. For a run, the number
of cycles is T. Hence the system behavior in the tth
([1,]t T∈

�
) cycle only depends on the system status in the

(t-1)th cycle. By running as a Markov chain process, the
system can be analyzed in each cycle.

General problem solving capability arises from the
interaction of declarative knowledge and procedural
knowledge [1] [21]. In MAOSC, declarative knowledge is
represented in units called INFO elements, and procedural
knowledge is represented in units called behavioral rules.

Each INFO element is described by a tuple <I_TYPE,
I_CON>, where I_TYPE indicates a certain data structure

IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT), Compiégne, France, 2005: 38-44

[Cooperative Group Optimization] http://www.wiomax.com/optimization

that satisfies some specific conditions, and I_CON is its
content that can be changed during the search process.

The memory [7][25] is used for storing retrievable
INFO elements (T_INFO). Here a T_INFO element is
described by a tuple <I_RC, INFO>, where I_RC is a
retrieval cue. Each T_INFO element can be retrieved from
a memory according to its I_RC.

If the memory is to be useful, it must be updated during
a run. But updating is not encoding a new T_INFO
element. Instead, only the I_CON is subjected to change.
Then a T_INFO element can be referred as a trajectory
that comprise of many T_INFO instances. At the tth cycle,
a T_INFO instance is expressed as ()

I_RCI_TYPE t .

All behavioral rules are stored in a behavioral library.
Each rule is retrieved by a tuple <T_NAME, T_KEY>,
where T_KEY indicates a virtual interface for handling
specific T_INFO elements, and T_NAME indicates the
realized operations, which can be controlled by specifying
setting parameters within a bounded rule-parameter space.
Each rule has default values for setting parameters.

An executable behavioral instance is a behavioral rule
with specified parameter values. Hence an instance itself
has no parameters. Here both a behavioral rule and its

default instance are expressed as T_NAME
T_KEYR .

At t=0, T_INFO elements in memory are initialized at
random. At each cycle, as in a learning process, selected
behaviors are executed for acquiring the memory [21].

Although AOC methods are implemented with different
approaches, they have similar structures and operating
mechanisms. The key elements of AOC include an
environment, agents and their interactions [18].

2.1. Environment

The environment is the task-dependent computational
problem on which a society of agents works [28]. As one
of the main components in an AOC system, an
environment usually plays two roles [18].

Firstly, it serves as the domain in which agents roam.
From the static view, it contains a functional form F of the
optimization task and provides feedback in the form of a
scalar value for each potential solution within S.

Secondly, the environment acts as the blackboard where
agents can read and/or post their local information. From
this dynamic view, the environment holds a social sharing
memory, called MS, which is shared by all agents. In this
sense, the environment can be regarded as an indirect
communication medium among agents.

2.2. Agents

There exists a compact society of N homogenous agents,
where each agent is an autonomous entity. Autonomy is an

attribute of a self-governed, self-directed entity with
respect to its own status, free from the explicit control of
another entity [18]. However, only direct perturbation is
prohibited; indirect influence is encouraged. The essence
is that each entity is able to make decisions for itself,
subject to the limitations of the available information.

At each moment, an agent is in a certain state. It,
according to its behavioral rules, selects and performs its
behaviors so as to achieve its goal with respect to its state.
A compact agent is formalized as follows:

a) Goal: The goal of each agent is to explore the
environment and find a good solution of problem F.

b) Evaluation function: It is used for evaluating whether
or not a potential solution of F is a good one, which is

realized by a O
MR (ax
�

, bx
�

) rule: for ∀ ax
�

, bx
� ∈ S, if

f(ax
�

) ≤ f(bx
�

), then the goodness of ax
�

 is better than that

of bx
�

, and O
MR returns TRUE, else it returns FLASE.

The goodness evaluation implies motivation [13]:
saying that one potential solution is better than another is
only a way of saying that agents try to attain that solution.

c) State: It is characterized by a T_INFO set situated in
a private memory, called MA, which can only be accessed
by agent itself. The T_INFO set in MA is expressed as
$E_MA, where the symbol “$” indicates a T_INFO set.

d) Behaviors and behavioral rules: Central to an agent
is its local behaviors and behavioral rules that govern how
it should act or react to the available information while
determine the next state to which the entity will transit.

The law of behavior is socially biased individual
learning (SBIL) heuristics [8][30], i.e. a mix of reinforced
practice of own experience in MA and shared information
in MS, which [5] a) gains most of the advantages of both
individual learning and social learning; and b) allows
cumulative improvement to the next learning cycle.

The essential behavioral rule is generate-and-test rule
(RGT), which is used to: a) generate new potential
solutions by estimating the distribution of promising space
according to available information situated in MA and MS;
b) modify its own MA and exert changes to MS for
facilitating the learning behaviors in the next cycle.

Moreover, behaviors benefit from a common feature -
the presence of stochastic nature [18]. For optimization
problems, two kinds of random operators are involved: a)
For c∀ ∈� , the ()U c

�
 returns a natural number selected

from [1, c]
�

 at random; b) For , l uc c∀ ∈� , the
(,)U c c
�

returns a real value selected from [c , c]
�

 at
random. Moreover, (0,1)U

�
 is abbreviated as U

�
.

2.3. Interactions

The emergent behavior of an AOC system is not
inherent in individual entities, which can only result from

the internal interactions. Generally speaking, there are two
kinds of interactions [18], namely, interactions between
entities and environment and interactions among entities.

The interactions between agents and their environment
are realized by background operations: at the beginning of
the tth cycle, the INFO instances in all agents with a
specified I_RC and I_TYPE are collected into a T_INFO
element, called ()

I_RC$I_TYPE t , which is situated in MS.

The collected elements in MS can either be cloned or be
referred from MA of agents. Here we use former situation,
i.e. the elements in MS will be unchanged during a cycle.

Hence MS contains observable information from the MA
of agents. It is significant since observational learning can
lead to cumulative evolution of knowledge that no single
individual could invent on its own [2].

An agent is communicated with the others by indirect
interactions, which are implicit implemented through the
communication medium role of MS. While an agent
behaves, it will consider the information in MS, which has
been “transferred” to the MS by the others.

3. The macro generate-and-test behavior

Here we describe the macro generate-and-test behavior.
First, the generate-and-test behavior is described. Then the
normal macro RGT rule is introduced. At last, a macro RGT
rule with a testing operation library (TOL) is presented.

3.1. The generate-and-test behavior

Since the agents can exert the changes on MS by only
modifying its own MA during a cycle, the generate-and-
test behavior can be represented as:

 ()
 () ()

 (1)

{ }
, GT

t
Rt t

A S t
A

x
M M

M +

��→�
��

�

(2)

The essential components of an RGT rule include a
generating part (RG), a solution-extracting part (RS) and a
testing part (RT). Without loss of generality, it can be
supposed that only the generating part can create new
information that contains new potential solution (s), and
the testing part only produces conditioned reflex behavior.

The RG part estimates the distribution of promising
solutions and samples a T_INFO set, called $E_G(t):

 () (),t t
A SM M → GR $E_G(t) (3)

The $E_G(t) contains potential solution(s), which is
exported by the solution-extracting part (RS):

$E_G(t) → SR { ()tx
�

} (4)

The RS part has no influence on the problem-solving
process. It just exports potential solution(s) during a run.

During a run, the T_INFO elements in LTM are
subjected to be updated by the testing rule (RT):

$E_MA(t), $E_G(t) TR→ (1)t
AM + (5)

Under specified MA and MS, various RGT rules can be
realized by using full or part of the available information.

3.2. The macro RGT rule (RGTM)

The macro RGT rule (RGTM) manages an array of RGT
rules by a deploying rule (RDEP) [30]. At this time, such
RGT rules are defined as elemental RGT rule (RGTE).

Here a simple proportional-deploying rule (P
DEPR) is

used. It can be viewed as a single-layer network, where an
association strength value wS (wS ≥ 0, wS∈ �) is assigned
to each output node associated with an RGTE rule. At each
time, only an output node is activated, where the selection
probability for each node is equal to /()S Sw w� .

For an RGTM rule, various RGT rules can be realized by
specifying different wS value set. In particular, if we keep
the wS value for a specified RGTE rule larger than 0 and
keep the wS values for other RGTE rules equal to 0, then the
RGTM rule is equivalent to the specified RGTE rule.

If all RGTE rules in the RGTM rule do not share T_INFO
elements in MA and MS, then the performance of an RGTM
rule is simply the weighted performance of its RGTE rules.

Some RGTE rules may share the T_INFO elements in MA
and/or MS. During a run, those cooperative RGTE rules may
facilitate each others by searching in a reduced space of
possibilities [11] and escaping from the local traps. Of
course, the successful cooperation often benefits from the
available knowledge on sharing T_INFO elements.

3.3. RGTM with a testing operation library (TOL
GTMR)

In an TOL
GTMR rule, each RGTE rule is represented by an RG

rule under the testing operation library (TOL), i.e.,

{ RGTE } → GOL+TOL (6)

where the generating operation library (GOL) contains a
set of RG instances, and the TOL is employed for
representing some predefined RT instances. Each RT
instance is accessed by certain $E_MAG* and $E_GG*,
which are the input and the output of an RG instance,
respectively. The RDEP and the GOL supports generating
new information, and the TOL provides conditioned reflex
behaviors for updating the memory automatically.

The TOL contains a set of testing operation tables
(TOTs). Each TOT table is defined for specified
$E_G* ⊆ $E_G and $E_MA* ⊆ $E_MA, which contains a
set of elemental testing operations (TOE). Each TOE
responds to one element E_MA* in $E_MA*:

TOE: $E_OE
 (t) TOER→ E_MA* (7)

where RTOE is an elemental testing operation rule.
$E_OE

(t) ⊆ $E_O(t), $E_O=$E_MA*C
(t) ∪ $E_G*

(t), where
$E_MA*C

(t) is a T_INFO set cloned from $E_MA*
(t).

Using of $E_MA*C
(t) in $E_O ensures that we need not

mind the executing sequence of the TOE operations.
For the $E_GG* and $E_MAG* of an RG rule, with the

TOT table retrieved from TOL by the $E_GG*, the RT part
is implicitly realized by executing all TOE operations
corresponding to all the elements in the $E_MAG*.

A TOT table is capable of supporting a number of RT
operations if we consider all the possible combinations of
elements in its $E_MA*. Hence, the TOL can support
various RG rules by realizing a few TOT tables.

Using the TOL also brings two advantages: a) it may
facilitate realizing new RG part since some nontrivial
properties of T_INFO elements may be known in advance;
b) it may be possible to know more details about the
difference for some RGTE rules, especially for those with
same $E_GG*, that are sharing the same TOE instances.

The RGTM with TOL is apt to be evolvable during
different runs: a) to add a new TOE instance into a certain
TOT table or to add a new TOT table into the TOL will
have no impacts on existing RG rules; b) as a TOE instance
of a certain TOT table is removed, those RG rules that use
the TOE instance are unsupported.

The evolving of GOL is achieved by adding/removing
RG instances instead of modifying the RG rules so as to
reserve the RG instances with established knowledge.

The adaptability is normally achieved by adjusting RDEP,
since both the GOL and the TOL are relatively stable
during different runs and they contain no parameters.

4. The implemented TOL
GTMR rule

To implement the TOL
GTMR rule, the following steps are

required: a) register supported {I_TYPE} for memory
elements; b) specify $E_MA and $E_G; c) realize some
RTOE rules, RG rules and RDEP rule; d) define the TOT
tables in TOL based on RTOE instances; and e) specify RG
instances and adjust ws value set for RDEP rule.

Here we only support the simplest I_TYPE, i.e., x S∈� .

Two RTOE(ax
�

, bx
�

) rules, i.e. D
TOER and G

TOER , are realized,
where each replaces ax

�
by bx
�

when isUpdate() ≡ TRUE.
We use three T_INFO elements, i.e., $E_MA={ Px

�
,

Rx
�

, Ox
�

}. Hence the T_INFO elements in MS include $ Px
�

,
$ Rx
�

, and $ Ox
�

. Here we only care for two of them, i.e.,
()$ t
Px
�

={ ()
()
t

P ix
�

| i∈ [1, N]
�

} and ()$ t
Rx
�

={ ()
()
t

R ix
�

| i∈ [1, N]
�

}.

As shown in Table 1, here only one TOT table, which
responds to $E_G={ Cx

�
} and $E_MA, is implemented.

����� � ��� � ��� � ��� � �� �����������������	 ��	 ��	 ��	 �����
� � �� ��� �� �� � � �
� � �� ��� �� �� � � �
� � �� ��� �� �� � � �
� � �� ��� �� �� � � � Cx
�

��������

E_MA E_OE RTOE: isUpdate()

Px
�

Cx
� G

TOER : O
MR (,C Px x
� �

)

Rx
�

Cx
� D

TOER : TRUE

Ox
�

 Rx
�

 D
TOER : TRUE

Some nontrivial properties about $E_MA elements can

be revealed from the TOT table. For each agent at each
cycle, Px

�
stores the best solution ever obtained, Rx

�
 stores

the most recently solution, and Ox
�

 stores the last Rx
�

.

Besides, the best solution in ()$ t
Px
�

is defined as ()t
Gx
�

,
which represents the best solution among agents.

Based on the TOL, three RG rules are implemented,
where the main bodies are extracted from existing
algorithms. Once Cx

� ∉S, the testing part will be aborted.
To ensure Cx

� ∈ S, different boundary handling methods
may be integrated with the RG part according to
knowledge about T_INFO elements, if necessarily.

4.1. Social impact RG rule (SI
GR)

The SI
GR rule is originated from an Electromagnetism-

like (EM) heuristic algorithm [3], which intends to make
an analogy with the attraction-repulsion mechanism for
sampling solutions. However, such mechanism is actually
realized by comparing the goodness of two points, which
is hardly explained by its physical metaphor.

Here we explain its behavior using a metaphor inspired
by the social impact theory [15], which declares that the
likelihood of a person responding to a social influence
will increase with: a) strength: how important the
influencing person is to you; b) immediacy: how close the
person is to you at the time of the influence attempt.

The SI
GR rule uses a T_INFO element ()t

Rx
�

 in MA and a

T_INFO element ()$ t
Rx
�

 in MS. It is realized as follows:
a) Evaluate the social influence strength information

into ISSV
�

according to ()$ t
Rx
�

:

() ()
()()

,
() ()

()
1

(())
exp

(())

t t
R i Gt

ISS i N
t t

R j G
j

D f x f
V

f x f
=

� �
− ⋅ −� 	

= � 	
� 	−�

 �

�

�
, i∀

(8)

where fG is the goodness value of the best solution in ()$ t
Rx
�

.

Its personal influence (ISPV) is the ()
,

t
ISI iV as ()

()
t

R ix
�

= ()t
Rx
�

.

b) Integrate the influential force vector IFV
�

 according
to the influence strength and immediacy of the states of
others, i.e., for ∀ i∈ [1, N]

�
as () ()

()|| ||t t
R i Rx x−� � ≠ 0,

() () () ()
, ()()

() ()
()

()

|| ||

t t t t
SIGN ISP ISS i R i Rt

IF t t
R i R

c V V x x
V

x x

⋅ ⋅ ⋅ −
= �

−

� �
�

� � , i∀
(9)

where SIGNc =1 if ()
,

t
ISS iV ≥ ()t

ISPV , else SIGNc =-1.

c) Normalize IFV
�

 to IFNV
�

: ()t
IFNV
�

= () ()t t
IF IFV V
� �

;

d) Generate ()t
Cx
�

: if ()()t
Rf x
� ≡ ()t

Gf , then ()t
Cx
�

= ()t
Rx
�

, else

for the dth dimension [3], if (t)
, >0IFN dV , then

() () () ()
, , , ,()

, () () ()
, , ,

() IF >0

() ELSE

t t t t
R d d R d IFN d IFN dt

C d t t t
R d R d d IFN d

x U x x V V
x

x U x x V

� + ⋅ − ⋅�= �
+ ⋅ − ⋅��

�

�

(10)

The social impact rule has no parameter.

4.2. Differential evolution RG rule (DE
GR)

The DE
GR rule is extracted from the behavior of an

individual in differential evolution (DE) [24], where its
rationality is to imitate the successful [5] in some aspects.

By using one element in MA, i.e., ()t
Px
�

, and one element

in MS, i.e. ()$ t
Px
�

, it generates)(t
Cx
�

 as in the following steps:

a) Create a sample T_INFO set ()$ t
Sx
�

:

() ()
()$ { | [1,2] }t t

S S i NVx x i C= ∈ ⋅
�

� �
 (11)

where for i∀ , ()
()
t

S ix
�

= ()
(())
t

P U Nx
�

�
 is selected from ()$ t

Px
�

at

random. NVC ∈� is the number of difference vectors [24];

b) Assigns)(t
Cx
�

= ()t
Px
�

and ()DRc U D=
�

;
c) For the dth dimension, if CRU C<

�
 or DRd c≡ , then

() () () ()
, , (2), (2 1),

1
()

NVC
t t t t

C d G d S n d S n d NV
n

x x x x C⋅ ⋅ −
=

= + −�
(12)

where [0,1]CRC ∈
�

is crossover factor [24], and DRc ensures
the variation is at least in one dimension.

Since ()t
Px
�

is a steady-state INFO element, the boundary

handling method for ensuring ()t
Cx S∈�

 can be realized

easily. For the dth dimension, if ()
, [,]t

C d d dx x x∉ , then

()
, = (,)t

C d d dx U x x
�

 (13)

The default parameter values include: NVC =2, CRC =0.1.

4.3. Particle swarm RG rule (PS
GR)

The PS
GR rule is extracted from the behavior of a

particle in particle swarm optimization (PSO) [14]. The
psychological assumption for the behavior of a particle is
[13]: in search for consistent cognition in a society, an

entity will tend to retain its own best beliefs, and will also
consider the beliefs of its colleagues.

The particle swarm rule uses all three elements in MA,
and one element in MS, i.e. ()$ t

Px
�

.

It generates)(t
Cx
�

by using the experiences of its own and
its colleagues, for the dth dimension:

, , , ,
() () () ()

(): (()C d R d R d O d
t t t t

K dx x c x x∆= + ⋅

, ,
() ()

() ()P d R d
t t

a dC U x x∆+ ⋅ ⋅
�

, ,
() ()

() ())G d R d
t t

b dC U x x∆+ ⋅ ⋅
�

(14)

where 2 ((4) 2)Kc ϕ ϕ ϕ= ⋅ − + − is called as constriction

factor [6] valid asϕ =Ca+Cb>4, and
()a bdx x∆ calculates the

difference for ,a bx x∀ ∈� at the dth dimension of S.

Normally, a plain
()d
∆ (called

()
P

d
∆) , which is equivalent

to the “-” operator, is used [6]. However, studies showed
that such a generating rule may suffer from a severe
degenerated performance caused by too many unnecessary
mutations for Rx

�
occurred at the boundary of S [32].

The success by the Periodic boundary handling mode
[32] implies that infinite space is much preferred by each
particle so as to eliminating unnecessary mutations. Here a
circled version is applied for each dimension, i.e. which
provides an infinite vision while keeping)(t

Cx
�

∈S.
As a dimension is rolled into a cycle, there are two

directions for calculating the difference of two points on
the cycle. Here the direction with a short distance is used.

For , [,]a b d dx x x x∀ ∈ , a cycled
()d
∆ operator (called

()
C
d

∆) is:

()

IF / 2
 IF / 2

 ELSE

ab d

C
a b dab ab dd

ab

x x

x x xx x x

x

∆
∆

∆ ∆

∆

< −�
�= − >�
�
�

(15)

where dx = d dx x− and abx∆ = a bx x− .

Finally, the dth dimension of)(t
Cx
�

 is repaired as:

 () ()
, , ()

, () ()
, ,

()% IF
=

()% IF

t t
d d C d d C d dt

C d t t
d C d d d C d d

x x x x x x
x

x x x x x x

� − − <�
�

+ − >��

(16)

The default parameter values include: Ca=Cb=2.05 [6].

5. Results and discussions

All INFO elements in MA of all agents are initialized in
S at random. By taking the initialization stage into account,
total evaluation times (TE) can be calculated as:

TE= N·(T+NMA) ≈ N·T (17)

where NMA is the number of T_INFO elements in MA.

 dab xx∆ +

By using three default RG instances, four RGTM cases
with different wS value sets are listed in Table 2.

����� � ��� � ��� � ��� � �� ��������������������� ��� ��� ��� �� �� � �� ����
� �� ���� � �
��� � �� ����
� �� ���� � �
��� � �� ����
� �� ���� � �
��� � �� ����
� �� ���� � �
���������� � �! � ���
� � �! � ���
� � �! � ���
� � �! � ���
��������

Case\RG SI
GR DE

GR PS
GR

SI#
� �

0
DE#

� �
0

PS# 0 0 1
DP# 0 0.5 0.5

Here two function sets are used for evaluating the

performance of the MAOSC cases.
The low-dimensional function set contains those Dixon

and Szegö functions [3] tested by Yao and Liu [31], which
are generally considered as easy problems [27]. Table 3
summaries their basic information (dimension D and
optimum value f*) and published mean results by fast
evolutionary programming (FEP) [31] averaged over 50
runs. For each run of FEP, TE=10000.

����� � ��� � ��� � ��� � �� ����""""���������! ##� $ �� ��%�& � � �� � � ��! ##� $ �� ��%�& � � �� � � ��! ##� $ �� ��%�& � � �� � � ��! ##� $ �� ��%�& � � �� � � ��' � ()�' � ()�' � ()�' � () ��������! � �
�� � �! � �
�� � �! � �
�� � �! � �
�� � �����

� � � �� � � �� � � �� � � �####� � � �� � � �� � � �� � � �� �! �
��� �! �
��� �! �
��� �! �
��� $ �� $ �� $ �� $ �* �+* �+* �+* �+ �,�,�,�,��������� �- - - - .� �- - - - .� �- - - - .� �- - - - .����/"�0/"�0/"�0/"�0����
Function [3] [31] D f* FEP[31]

Branin (BR) 2 0.39789 0.398
Goldstein Price (GP) 2 3 3.02
Six Hump Camel (C6) 2 -1.03163 -1.03
Hartman3D (H3) 3 -3.86278 -3.86
Hartman 6D (H6) 6 -3.32237 -3.27
Shekel5 (S5) 4 -10.15318 -5.52
Shekel7 (S7) 4 -10.40292 -5.52
Shekel10 (S10) 4 -10.53639 -6.57

Table 4 summaries the mean results by MAOSC cases

as N=10 and T=100 (TE ≈ 1000) averaged over 500 runs,
where a result in boldface indicates that it is no worse than
the result by FEP as in same precision. Here the SI# is not
performed well. But it can be improved by incorporating a
local search strategy [3] or by specifying larger N and T.
Both PS# and DE# perform well for several cases. With
their combinations of good features of PS# and DE#, DP#
performs well in all cases by comparing to FEP in only
tenth evaluation times. Besides, it also shows that
sometimes DE# performs better than both PS# and DE#,
e.g., H3, which may due to the interactions on shared Px

�
.

����� � ��� � ��� � ��� � �� ����1111��������� � � � �� �! �
��� � � � �� �! �
��� � � � �� �! �
��� � � � �� �! �
��� $� $� $� $ ��������� ��� ��� ��� �� �� � �� ��,�� � �� ��,�� � �� ��,�� � �� ��,��������2222�- - -�- - -�- - -�- - -����

F SI# DE# PS# DP#
BR 0.40787 0.39795 0.39789 0.39793
GP 3.24542 4.62017 3.00000 3.00589
C6 -1.02493 -1.03163 -1.03163 -1.03163
H3 -3.85608 -3.84933 -3.86070 -3.86278
H6 -3.23163 -3.29149 -3.26733 -3.27604
S5 -5.05961 -6.41440 -5.23902 -5.91482
S7 -6.00746 -7.10326 -5.75942 -6.96877
S10 -5.93186 -7.49203 -5.87551 -7.12365

Ho et al. [10] have tested seven algorithms, including
IEA, OEGA, UEGA, TEGA, BLXGA, BOA [22] and
OGA, for solving 10-D functions as TE=10000. Among
these algorithms, BOA has the best performance [10].

Table 5 summaries the f*, the mean results by BOA in
[10], and the mean results by MAOSC cases (except for
SI#) as N=10 and T=1000 (TE ≈ 10000) averaged over 500
runs. Here PS# performs better than BOA for 6 problems,
while both DE# and DP# perform better than BOA for 10
problems. For f1 and f9, DP# performs as No.3 and No.2
among the algorithms used by Ho et al. [10], respectively.

����� � ��� � ��� � ��� � �� ����3333��������� � � � �� �! �
�� � � � �� �! �
�� � � � �� �! �
�� � � � �� �! �
���� ��-��� ��-��� ��-��� ��- %%%%�����! � �
�� � ��! � �
�� � ��! � �
�� � ��! � �
�� � �����,,,,��������2222�- - - - .�- - - - .�- - - - .�- - - - .����

F f* BOA [10] DE# PS# DP#
f1 -12.1598 -12.151 -12.0943 -11.5503 -12.1201
f2 -18 -12.29 -16.1427 -15.8501 -15.9473
f3 0 0.77 0.034 3.276 0.002
f4 0 5.32 1.09689 13.48593 1.12454
f5 0 0.0077 4.84E-21 2.27E-12 2.38E-11
f6 -18.5027 -18.01 -18.0569 -13.5354 -18.1481
f7 0 0.019 0.00116 0.00130 0.00702
f8 0 0.93 0.11513 1.17806 0.01390
f9 0 8.4 152.7844 682.8690 90.6056
f10 0 8.93 5.26981 6.96009 5.1077
f11 0 10.067 1.348 7.192 0.416
f12 0 1.008 0.02544 0.14677 0.06032

6. Conclusions

In this paper, we have proposed a compact multiagent
system (MAOSC) based on autonomy oriented computing
(AOC). Performed by a society of autonomous entities in
iterative cycles, an optimization algorithm can simply be
described by a macro generate-and-test behavior.

The MAOSC system has the following characteristics:
Firstly, it is a framework for realizing various numerical

optimization algorithms in an easy way. Several existing
algorithms, including particle swarm optimization (PSO),
differential evolution (DE), and electromagnetism-like
heuristic algorithm (EM), have been implemented.

Secondly, it is a natural framework for comparing
different generate-and-test behaviors. Based on a simple
TOL, we may focus on their generating parts by utilizing
some known properties of existing declarative knowledge.

Thirdly, it is capable of producing macro algorithms by
deploying some simple RG instances, where each covers a
part of problems, for cooperative search. As shown in the
experiments, the macro RGT rule performs better than each
of its elemental RG instances on specified problem sets.

Finally, it may provide a base towards realizing user-
oriented algorithms in future. The MAOSC is not intended
to be a universal solver at all time. Instead, it is focused
on the problems, which a certain user feels interested in,
varied at different periods. The components of the RGTM
rule, i.e., the deploying rule, the GOL and the TOL, are

subjected to be evolvable for such a purpose. As time
goes by, we may only focused on tackling those problems
poorly solved by all existing RG instances while those
obsolete RG instances may be discarded by some methods,
e.g., minimum set cover, based on those solved examples.

Acknowledgment

The reported work has been supported by an RGC
CERG research grant (HKBU 2121/03E).

References

[1] J. Anderson, "ACT: A simple theory of complex cognition,"
American Psychologist, vol. 51, pp. 355-365, 1996.

[2] A. Bandura, Social Foundations of Thought and Action: A
Social Cognitive Theory. NJ: Prentice-Hall, 1986.

[3] S. I. Birbil and S.-C. Fang, "An electromagnetism-like
mechanism for global optimization," J. Global Optimization,
vol. 25, pp. 263-282, 2003.

[4] E. Bonabeau, "Agent-based modeling: Methods and
techniques for simulating human systems," Proc. Natl. Acad.
Sci. USA, vol. 99, pp. 7280-7287, 2002.

[5] R. Boyd and P. J. Richerson, The Origin and Evolution of
Cultures. New York: Oxford University Press, 2005.

[6] M. Clerc and J. Kennedy, "The particle swarm - explosion,
stability, and convergence in a multidimensional complex
space," IEEE Trans. Evol. Comput., vol. 6, pp. 58-73, 2002.

[7] K. A. Ericsson and W. Kintsch, "Long-term working
memory," Psychol. Review, vol. 102, pp. 211-245, 1995.

[8] B. G. Galef, "Why behaviour patterns that animals learn
socially are locally adaptive," Animal Behaviour, vol. 49,
pp. 1325-1334, 1995.

[9] G. Gigerenzer and D. G. Goldstein, "Reasoning the fast and
frugal way: Models of bounded rationality," Psychol.
Review, vol. 103, pp. 650-669, 1996.

[10] S. Y. Ho, L. S. Shu, J. H. Chen, "Intelligent evolutionary
algorithms for large parameter optimization problems,"
IEEE Trans. Evol. Comput., vol. 8, pp. 522-541, 2004.

[11] T. Hogg and C. P. Williams, "Solving the really hard
problems with cooperative search," Proc. of AAAI, 1993.

[12] B. Hu, J. Liu, and X. Jin, "From local behaviors to global
performance in a multi-agent system," IEEE/WIC/ACM Int.
Conf. on Intelligent Agent Technology, pp. 309-315, 2004.

[13] J. Kennedy, "The particle swarm: Social adaptation of
knowledge," Int. Conf. on Evolutionary Computation,
Indianapolis, Indiana, 1997.

[14] J. Kennedy and R. C. Eberhart, "Particle swarm
optimization," IEEE Int. Conf. on Neural Networks, 1995.

[15] B. Latané, "The psychology of social impact," American
Psychologist, vol. 36, pp. 343-356, 1981.

[16] J. Liu and Y. Y. Tang, "Adaptive image segmentation with
distributed behavior-based agents," IEEE Trans. on PAMI,
vol. 21, pp. 544-551, 1999.

[17] J. Liu, J. Han, and Y. Y. Tang, "Multi-agent oriented
constraint satisfaction," Artificial Intelligence, vol. 136, pp.
101-144, 2002.

[18] J. Liu, X. Jin, and K. C. Tsui, Autonomy Oriented
Computing (AOC): From Problem Solving to Complex
Systems Modeling: Kluwer Academic Publishers, 2005.

[19] M. Milano and A. Poli, "MAGMA: A multiagent
architecture for metaheuristics," IEEE Trans. Systems, Man
and Cybernetics - Part B, vol. 34, pp. 925-941, 2004.

[20] A. Newell, "The knowledge level," Artificial Intelligence,
vol. 18, pp. 87-127, 1982.

[21] H. Okano, T. Hirano, and E. Balaban, "Learning and
memory," Proc. Natl. Acad. Sci. USA, vol. 97, pp. 12403-
12404, 2000.

[22] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, "BOA: The
Bayesian optimization algorithm," Genetic and
Evolutionary Computation Conference, 1999.

[23] A. S. Rao and M. Georgeff, "BDI Agents: From theory to
practice," Int. Conf. on Multi-Agent Systems, 1995.

[24] R. Storn and K. V. Price, "Differential evolution - a simple
and efficient heuristic for global optimization over
continuous spaces," J. Global Optimization, vol. 11, pp.
341-359, 1997.

[25] E. D. Taillard, L. M. Gambardella, M. Gendreau, and J.-Y.
Potvin, "Adaptive memory programming: A unified view of
metaheuristics," European J. Operational Research, vol. 135,
pp. 1-16, 2001.

[26] P. M. Todd and G. Gigerenzer, "Précis of simple heuristics
that make us smart," Behavioral and Brain Sciences, vol. 23,
pp. 727-741, 2000.

[27] A. Törn, M. M. Ali, and S. Viitanen, "Stochastic global
optimization: Problem classes and solution techniques," J.
Global Optimization, vol. 14, pp. 437-447, 1999.

[28] K. C. Tsui and J. Liu, "Multiagent diffusion and distributed
optimization," Int. Joint Conf. on Autonomous Agents and
Multiagent Systems, Melbourne, Australia, pp. 169-176,
2003.

[29] D. H. Wolpert and W. G. Macready, "No free lunch
theorems for optimization," IEEE Trans. Evol. Comput., vol.
1, pp. 67-82, 1997.

[30] X. F. Xie and W. J. Zhang, "SWAF: Swarm algorithm
framework for numerical optimization," Genetic and
Evolutionary Computation Conference, 2004.

[31] X. Yao, Y. Liu, "Evolutionary programming made faster,"
IEEE Trans. Evol. Comput., vol. 3, pp. 82-102, 1999.

[32] W. J. Zhang, X. F. Xie, and D. C. Bi, "Handling boundary
constraints for numerical optimization by particle swarm
flying in periodic search space," Congress on Evolutionary
Computation, Oregon, USA, 2004.

