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Abstract 
 

A compact multiagent optimization system (MAOSC) 
based on autonomy oriented computing (AOC) is 
presented. Performed by a society of autonomous entities 
in iterative cycles, an optimization algorithm can simply 
be described by a macro generate-and-test behavior, 
which deploys a few elemental generating behaviors 
under conditioned reflex behaviors supported by a testing 
operation library. MAOSC provides a simple framework 
for not only realizing and comparing algorithms, but also 
deploying evolvable algorithms. The experimental results 
of MAOSC cases on benchmark functions are compared 
with those of other algorithms, which show its efficiency. 

1. Introduction 

Problems which involve numerical optimization are 
ubiquitous throughout scientific communities. A general 
numerical optimization problem F can be defined as: 

Miniminze : ( )f x
�

 (1) 

where f is an objective function, x
�

= 1{ ,..., ,..., }T
d Dx x x and 

search space (S) is a D-dimensional space bounded by all 
parametric constraints xd∈ [ dx , dx ]. Suppose for a certain 

solution *x
�

, there exists *( ) ( )f x f x≤� �
 for Dx S∀ ∈ ⊆�

� , 

then *x
�

 and *( )f x
�

 are the global optimum solution and 
the optimum value, respectively. The solution space is 
defined as *{ | ( ) ( ) }O OS x f x f x ε= − ≤� � �

, where 0Oε ≥ is a 
small value. Normally, SO/S is quite small. As a goal for 
finding Ox S∈�  with high probability, typical challenges 
include: a) little a priori knowledge is available for each 
problem; and b) total computational resource is bounded. 

Agent-based methods have been developed in the last 
few years [4][18][23], where each agent is an entity 
featured by knowledge as the medium and the principle of 
rationality as the law of behavior [20]. 

Autonomy oriented computing (AOC) methods [18] 
address the modeling of autonomy in the entities of a 
complex system and the self-organization of them in 
achieving a specific goal, which is suitable for solving 
hard computational problems. The complex system 

behaviors can emerge from the interactions of individual 
entities following simple behaviors [12][16][17][28]. 

Under the framework of autonomy oriented computing 
(AOC), an optimization algorithm can be described by a 
specific generate-and-test behavior, which is performed by 
every autonomous entity in iterative cycles. The law of 
behavior is fast-and-frugal heuristics [9], which makes a 
tradeoff on generality [29] versus specificity and avoids 
the trap from specificity by their very simplicity so as to 
generalize well to new situations [26]. Comparing with 
existing algorithmic frameworks [19][25][30], AOC-
based optimization system addresses the capability for 
deploying evolvable algorithms as well as the capability 
for realizing and comparing algorithms. 

The paper is organized as follows. In Section 2, the 
compact multiagent optimization system (MAOSC) based 
on AOC is presented. In Section 3, the macro generate-
and-test behavior, which is the essential behavior of each 
agent, is described. With the conditioned reflex behaviors 
provided by a testing operation library, users may focus 
on realizing elemental generating behaviors. In Section 4, 
a specific macro generate-and-test rule is implemented, 
where three generating rules are extracted from existing 
algorithms [3][14][24]. In Section 5, the MAOSC cases 
are applied on benchmark functions, and the experimental 
results are compared with those of existing algorithms 
[10][22][31]. In the last section, this paper is concluded. 

2. Compact multiagent optimization system 

MAOSC is a compact problem solver with the specific 
structure and operating mechanism based on AOC. 

MAOSC runs in iterative cycles. For a run, the number 
of cycles is T. Hence the system behavior in the tth 
( [1, ]t T∈

�
) cycle only depends on the system status in the 

(t-1)th cycle. By running as a Markov chain process, the 
system can be analyzed in each cycle. 

General problem solving capability arises from the 
interaction of declarative knowledge and procedural 
knowledge [1] [21]. In MAOSC, declarative knowledge is 
represented in units called INFO elements, and procedural 
knowledge is represented in units called behavioral rules. 

Each INFO element is described by a tuple <I_TYPE, 
I_CON>, where I_TYPE indicates a certain data structure 
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that satisfies some specific conditions, and I_CON is its 
content that can be changed during the search process. 

The memory [7][25] is used for storing retrievable 
INFO elements (T_INFO). Here a T_INFO element is 
described by a tuple <I_RC, INFO>, where I_RC is a 
retrieval cue. Each T_INFO element can be retrieved from 
a memory according to its I_RC. 

If the memory is to be useful, it must be updated during 
a run. But updating is not encoding a new T_INFO 
element. Instead, only the I_CON is subjected to change. 
Then a T_INFO element can be referred as a trajectory 
that comprise of many T_INFO instances. At the tth cycle, 
a T_INFO instance is expressed as  ( )

I_RCI_TYPE t . 

All behavioral rules are stored in a behavioral library. 
Each rule is retrieved by a tuple <T_NAME, T_KEY>, 
where T_KEY indicates a virtual interface for handling 
specific T_INFO elements, and T_NAME indicates the 
realized operations, which can be controlled by specifying 
setting parameters within a bounded rule-parameter space. 
Each rule has default values for setting parameters. 

An executable behavioral instance is a behavioral rule 
with specified parameter values. Hence an instance itself 
has no parameters. Here both a behavioral rule and its 

default instance are expressed as T_NAME
T_KEYR . 

At t=0, T_INFO elements in memory are initialized at 
random. At each cycle, as in a learning process, selected 
behaviors are executed for acquiring the memory [21]. 

Although AOC methods are implemented with different 
approaches, they have similar structures and operating 
mechanisms. The key elements of AOC include an 
environment, agents and their interactions [18]. 

2.1. Environment 

The environment is the task-dependent computational 
problem on which a society of agents works [28]. As one 
of the main components in an AOC system, an 
environment usually plays two roles [18]. 

Firstly, it serves as the domain in which agents roam. 
From the static view, it contains a functional form F of the 
optimization task and provides feedback in the form of a 
scalar value for each potential solution within S. 

Secondly, the environment acts as the blackboard where 
agents can read and/or post their local information. From 
this dynamic view, the environment holds a social sharing 
memory, called MS, which is shared by all agents. In this 
sense, the environment can be regarded as an indirect 
communication medium among agents. 

2.2. Agents 

There exists a compact society of N homogenous agents, 
where each agent is an autonomous entity. Autonomy is an 

attribute of a self-governed, self-directed entity with 
respect to its own status, free from the explicit control of 
another entity [18]. However, only direct perturbation is 
prohibited; indirect influence is encouraged. The essence 
is that each entity is able to make decisions for itself, 
subject to the limitations of the available information. 

At each moment, an agent is in a certain state. It, 
according to its behavioral rules, selects and performs its 
behaviors so as to achieve its goal with respect to its state. 
A compact agent is formalized as follows: 

a) Goal: The goal of each agent is to explore the 
environment and find a good solution of problem F. 

b) Evaluation function: It is used for evaluating whether 
or not a potential solution of F is a good one, which is 

realized by a O
MR ( ax
�

, bx
�

) rule: for ∀ ax
�

, bx
� ∈ S, if 

f( ax
�

) ≤ f( bx
�

), then the goodness of ax
�

 is better than that 

of bx
�

, and O
MR  returns TRUE, else it returns FLASE. 

The goodness evaluation implies motivation [13]: 
saying that one potential solution is better than another is 
only a way of saying that agents try to attain that solution. 

c) State: It is characterized by a T_INFO set situated in 
a private memory, called MA, which can only be accessed 
by agent itself. The T_INFO set in MA is expressed as 
$E_MA, where the symbol “$” indicates a T_INFO set. 

d) Behaviors and behavioral rules: Central to an agent 
is its local behaviors and behavioral rules that govern how 
it should act or react to the available information while 
determine the next state to which the entity will transit. 

The law of behavior is socially biased individual 
learning (SBIL) heuristics [8][30], i.e. a mix of reinforced 
practice of own experience in MA and shared information 
in MS, which [5] a) gains most of the advantages of both 
individual learning and social learning; and b) allows 
cumulative improvement to the next learning cycle. 

The essential behavioral rule is generate-and-test rule 
(RGT), which is used to: a) generate new potential 
solutions by estimating the distribution of promising space 
according to available information situated in MA and MS; 
b) modify its own MA and exert changes to MS for 
facilitating the learning behaviors in the next cycle. 

Moreover, behaviors benefit from a common feature - 
the presence of stochastic nature [18]. For optimization 
problems, two kinds of random operators are involved: a) 
For c∀ ∈� , the ( )U c

�
 returns a natural number selected 

from [1, c]
�

 at random; b) For , l uc c∀ ∈� , the 
( , )U c c
�

returns a real value selected from [ c , c ]
�

 at 
random. Moreover, (0,1)U

�
 is abbreviated as U

�
. 

2.3. Interactions 

The emergent behavior of an AOC system is not 
inherent in individual entities, which can only result from 



the internal interactions. Generally speaking, there are two 
kinds of interactions [18], namely, interactions between 
entities and environment and interactions among entities. 

The interactions between agents and their environment 
are realized by background operations: at the beginning of 
the tth cycle, the INFO instances in all agents with a 
specified I_RC and I_TYPE are collected into a T_INFO 
element, called  ( )

I_RC$I_TYPE t , which is situated in MS.  

The collected elements in MS can either be cloned or be 
referred from MA of agents. Here we use former situation, 
i.e. the elements in MS will be unchanged during a cycle. 

Hence MS contains observable information from the MA 
of agents. It is significant since observational learning can 
lead to cumulative evolution of knowledge that no single 
individual could invent on its own [2]. 

An agent is communicated with the others by indirect 
interactions, which are implicit implemented through the 
communication medium role of MS. While an agent 
behaves, it will consider the information in MS, which has 
been “transferred” to the MS by the others.  

3. The macro generate-and-test behavior 

Here we describe the macro generate-and-test behavior. 
First, the generate-and-test behavior is described. Then the 
normal macro RGT rule is introduced. At last, a macro RGT 
rule with a testing operation library (TOL) is presented. 

3.1. The generate-and-test behavior 

Since the agents can exert the changes on MS by only 
modifying its own MA during a cycle, the generate-and-
test behavior can be represented as: 

 ( )
 ( )  ( )

 ( 1)

{ }
, GT

t
Rt t

A S t
A

x
M M

M +

��→�
��

�

 
(2) 

The essential components of an RGT rule include a 
generating part (RG), a solution-extracting part (RS) and a 
testing part (RT). Without loss of generality, it can be 
supposed that only the generating part can create new 
information that contains new potential solution (s), and 
the testing part only produces conditioned reflex behavior. 

The RG part estimates the distribution of promising 
solutions and samples a T_INFO set, called $E_G(t): 

 ( )  ( ),t t
A SM M → GR $E_G(t) (3) 

The $E_G(t) contains potential solution(s), which is 
exported by the solution-extracting part (RS): 

$E_G(t) → SR {  ( )tx
�

} (4) 

The RS part has no influence on the problem-solving 
process. It just exports potential solution(s) during a run. 

During a run, the T_INFO elements in LTM are 
subjected to be updated by the testing rule (RT): 

$E_MA(t), $E_G(t) TR→   ( 1)t
AM +  (5) 

Under specified MA and MS, various RGT rules can be 
realized by using full or part of the available information. 

3.2. The macro RGT  rule (RGTM) 

The macro RGT rule (RGTM) manages an array of RGT 
rules by a deploying rule (RDEP) [30]. At this time, such 
RGT rules are defined as elemental RGT rule (RGTE). 

Here a simple proportional-deploying rule ( P
DEPR ) is 

used. It can be viewed as a single-layer network, where an 
association strength value wS (wS ≥ 0, wS∈ � ) is assigned 
to each output node associated with an RGTE rule. At each 
time, only an output node is activated, where the selection 
probability for each node is equal to /( )S Sw w� . 

For an RGTM rule, various RGT rules can be realized by 
specifying different wS value set. In particular, if we keep 
the wS value for a specified RGTE rule larger than 0 and 
keep the wS values for other RGTE rules equal to 0, then the 
RGTM rule is equivalent to the specified RGTE rule. 

If all RGTE rules in the RGTM rule do not share T_INFO 
elements in MA and MS, then the performance of an RGTM 
rule is simply the weighted performance of its RGTE rules. 

Some RGTE rules may share the T_INFO elements in MA 
and/or MS. During a run, those cooperative RGTE rules may 
facilitate each others by searching in a reduced space of 
possibilities [11] and escaping from the local traps. Of 
course, the successful cooperation often benefits from the 
available knowledge on sharing T_INFO elements. 

3.3. RGTM with a testing operation library ( TOL
GTMR ) 

In an TOL
GTMR rule, each RGTE rule is represented by an RG 

rule under the testing operation library (TOL), i.e., 

{ RGTE } → GOL+TOL (6) 

where the generating operation library (GOL) contains a 
set of RG instances, and the TOL is employed for 
representing some predefined RT instances. Each RT 
instance is accessed by certain $E_MAG* and $E_GG*, 
which are the input and the output of an RG instance, 
respectively. The RDEP and the GOL supports generating 
new information, and the TOL provides conditioned reflex 
behaviors for updating the memory automatically. 

The TOL contains a set of testing operation tables 
(TOTs). Each TOT table is defined for specified 
$E_G* ⊆ $E_G and $E_MA* ⊆ $E_MA, which contains a 
set of elemental testing operations (TOE). Each TOE 
responds to one element E_MA* in $E_MA*: 



TOE: $E_OE
 (t) TOER→  E_MA* (7) 

where RTOE is an elemental testing operation rule. 
$E_OE

(t) ⊆ $E_O(t), $E_O=$E_MA*C
(t) ∪ $E_G*

(t), where 
$E_MA*C

(t) is a T_INFO set cloned from $E_MA*
(t). 

Using of $E_MA*C
(t) in $E_O ensures that we need not 

mind the executing sequence of the TOE operations. 
For the $E_GG* and $E_MAG* of an RG rule, with the 

TOT table retrieved from TOL by the $E_GG*, the RT part 
is implicitly realized by executing all TOE operations 
corresponding to all the elements in the $E_MAG*. 

A TOT table is capable of supporting a number of RT 
operations if we consider all the possible combinations of 
elements in its $E_MA*. Hence, the TOL can support 
various RG rules by realizing a few TOT tables. 

Using the TOL also brings two advantages: a) it may 
facilitate realizing new RG part since some nontrivial 
properties of T_INFO elements may be known in advance; 
b) it may be possible to know more details about the 
difference for some RGTE rules, especially for those with 
same $E_GG*, that are sharing the same TOE instances. 

The RGTM with TOL is apt to be evolvable during 
different runs: a) to add a new TOE instance into a certain 
TOT table or to add a new TOT table into the TOL will 
have no impacts on existing RG rules; b) as a TOE instance 
of a certain TOT table is removed, those RG rules that use 
the TOE instance are unsupported. 

The evolving of GOL is achieved by adding/removing 
RG instances instead of modifying the RG rules so as to 
reserve the RG instances with established knowledge. 

The adaptability is normally achieved by adjusting RDEP, 
since both the GOL and the TOL are relatively stable 
during different runs and they contain no parameters. 

4. The implemented TOL
GTMR  rule 

To implement the TOL
GTMR  rule, the following steps are 

required: a) register supported {I_TYPE} for memory 
elements; b) specify $E_MA and $E_G; c) realize some 
RTOE rules, RG rules and RDEP rule; d) define the TOT 
tables in TOL based on RTOE instances; and e) specify RG 
instances and adjust ws value set for RDEP rule. 

Here we only support the simplest I_TYPE, i.e., x S∈� . 

Two RTOE( ax
�

, bx
�

) rules, i.e. D
TOER and G

TOER , are realized, 
where each replaces ax

�
by bx
�

when isUpdate() ≡ TRUE. 
We use three T_INFO elements, i.e., $E_MA={ Px

�
, 

Rx
�

, Ox
�

}. Hence the T_INFO elements in MS include $ Px
�

, 
$ Rx
�

, and $ Ox
�

. Here we only care for two of them, i.e., 
( )$ t
Px
�

={ ( )
( )
t

P ix
�

| i∈ [1, N]
�

} and ( )$ t
Rx
�

={ ( )
( )
t

R ix
�

| i∈ [1, N]
�

}. 

As shown in Table 1, here only one TOT table, which 
responds to $E_G={ Cx

�
} and $E_MA, is implemented. 

����� � ��� � ��� � ��� � �� �����������������	 ��	 ��	 ��	 �����
� � �� ��� �� �� � � �
� � �� ��� �� �� � � �
� � �� ��� �� �� � � �
� � �� ��� �� �� � � � Cx
�

��������

E_MA E_OE RTOE: isUpdate() 

Px
�

  
Cx
� G

TOER : O
MR ( ,C Px x
� �

)

Rx
�

  
Cx
� D

TOER : TRUE

Ox
�

 Rx
�

 D
TOER : TRUE 

 
Some nontrivial properties about $E_MA elements can 

be revealed from the TOT table. For each agent at each 
cycle, Px

�
stores the best solution ever obtained, Rx

�
 stores 

the most recently solution, and Ox
�

 stores the last Rx
�

. 

Besides, the best solution in ( )$ t
Px
�

is defined as ( )t
Gx
�

, 
which represents the best solution among agents. 

Based on the TOL, three RG rules are implemented, 
where the main bodies are extracted from existing 
algorithms. Once Cx

� ∉S, the testing part will be aborted. 
To ensure Cx

� ∈ S, different boundary handling methods 
may be integrated with the RG part according to 
knowledge about T_INFO elements, if necessarily. 

4.1. Social impact RG rule ( SI
GR ) 

The SI
GR rule is originated from an Electromagnetism-

like (EM) heuristic algorithm [3], which intends to make 
an analogy with the attraction-repulsion mechanism for 
sampling solutions. However, such mechanism is actually 
realized by comparing the goodness of two points, which 
is hardly explained by its physical metaphor. 

Here we explain its behavior using a metaphor inspired 
by the social impact theory [15], which declares that the 
likelihood of a person responding to a social influence 
will increase with: a) strength: how important the 
influencing person is to you; b) immediacy: how close the 
person is to you at the time of the influence attempt. 

The SI
GR rule uses a T_INFO element ( )t

Rx
�

 in MA and a 

T_INFO element ( )$ t
Rx
�

 in MS. It is realized as follows: 
a) Evaluate the social influence strength information 

into ISSV
�

according to ( )$ t
Rx
�

: 

( ) ( )
( )( )

,
( ) ( )

( )
1

( ( ) )
exp

( ( ) )

t t
R i Gt

ISS i N
t t

R j G
j

D f x f
V

f x f
=

� �
− ⋅ −� 	

= � 	
� 	−�

 �

�

�
, i∀  

(8) 

where fG is the goodness value of the best solution in ( )$ t
Rx
�

.  

Its personal influence ( ISPV ) is the ( )
,

t
ISI iV  as ( )

( )
t

R ix
�

= ( )t
Rx
�

. 

b) Integrate the influential force vector IFV
�

 according 
to the influence strength and immediacy of the states of 
others,  i.e., for ∀ i∈ [1, N]

�
as ( ) ( )

( )|| ||t t
R i Rx x−� � ≠ 0, 



( ) ( ) ( ) ( )
, ( )( )

( ) ( )
( )

( )

|| ||

t t t t
SIGN ISP ISS i R i Rt

IF t t
R i R

c V V x x
V

x x

⋅ ⋅ ⋅ −
= �

−

� �
�

� � , i∀  
(9) 

where SIGNc =1 if ( )
,

t
ISS iV ≥ ( )t

ISPV , else SIGNc =-1. 

c) Normalize IFV
�

 to IFNV
�

: ( )t
IFNV
�

= ( ) ( )t t
IF IFV V
� �

; 

d) Generate ( )t
Cx
�

: if ( )( )t
Rf x
� ≡ ( )t

Gf , then ( )t
Cx
�

= ( )t
Rx
�

, else 

for the dth dimension [3], if (t)
, >0IFN dV , then 

( ) ( ) ( ) ( )
, , , ,( )

, ( ) ( ) ( )
, , ,

( )    IF >0

( )    ELSE

t t t t
R d d R d IFN d IFN dt

C d t t t
R d R d d IFN d

x U x x V V
x

x U x x V

� + ⋅ − ⋅�= �
+ ⋅ − ⋅��

�

�

 
(10) 

The social impact rule has no parameter. 

4.2. Differential evolution RG rule ( DE
GR ) 

The DE
GR  rule is extracted from the behavior of an 

individual in differential evolution (DE) [24], where its 
rationality is to imitate the successful [5] in some aspects. 

By using one element in MA, i.e., ( )t
Px
�

, and one element 

in MS, i.e. ( )$ t
Px
�

, it generates )( t
Cx
�

 as in the following steps: 

a) Create a sample T_INFO set ( )$ t
Sx
�

: 

( ) ( )
( )$ { | [1,2 ] }t t

S S i NVx x i C= ∈ ⋅
�

� �
 (11) 

where for i∀ , ( )
( )
t

S ix
�

= ( )
( ( ))
t

P U Nx
�

�
 is selected from ( )$ t

Px
�

at 

random. NVC ∈�  is the number of difference vectors [24]; 

b) Assigns )( t
Cx
�

= ( )t
Px
�

and ( )DRc U D=
�

; 
c) For the dth dimension, if CRU C<

�
 or DRd c≡ , then 

( ) ( ) ( ) ( )
, , (2 ), (2 1),

1
( )

NVC
t t t t

C d G d S n d S n d NV
n

x x x x C⋅ ⋅ −
=

= + −�  
(12) 

where [0,1]CRC ∈
�

is crossover factor [24], and DRc  ensures 
the variation is at least in one dimension. 

Since ( )t
Px
�

is a steady-state INFO element, the boundary 

handling method for ensuring ( )t
Cx S∈�

 can be realized 

easily. For the dth dimension, if ( )
, [ ,  ]t

C d d dx x x∉ , then 

( )
, = ( ,  )t

C d d dx U x x
�

 (13) 

The default parameter values include: NVC =2, CRC =0.1. 

4.3. Particle swarm RG rule ( PS
GR ) 

The PS
GR rule is extracted from the behavior of a 

particle in particle swarm optimization (PSO) [14]. The 
psychological assumption for the behavior of a particle is 
[13]: in search for consistent cognition in a society, an 

entity will tend to retain its own best beliefs, and will also 
consider the beliefs of its colleagues. 

The particle swarm rule uses all three elements in MA, 
and one element in MS, i.e. ( )$ t

Px
�

. 

It generates )( t
Cx
�

by using the experiences of its own and 
its colleagues, for the dth dimension: 

, , , ,
( ) ( ) ( ) ( )

( ): (( )C d R d R d O d
t t t t

K dx x c x x∆= + ⋅  

, ,
( ) ( )

( )         ( )P d R d
t t

a dC U x x∆+ ⋅ ⋅
�

 

, ,
( ) ( )

( )          ( ))G d R d
t t

b dC U x x∆+ ⋅ ⋅
�

 

(14) 

where 2 ( ( 4) 2)Kc ϕ ϕ ϕ= ⋅ − + −  is called as constriction 

factor [6] valid asϕ =Ca+Cb>4, and 
( )a bdx x∆  calculates the 

difference for ,a bx x∀ ∈�  at the dth dimension of S. 

Normally, a plain 
( )d
∆ (called 

( )
P

d
∆ ) , which is equivalent 

to the “-” operator, is used [6]. However, studies showed 
that such a generating rule may suffer from a severe 
degenerated performance caused by too many unnecessary 
mutations for Rx

�
occurred at the boundary of S [32]. 

The success by the Periodic boundary handling mode 
[32] implies that infinite space is much preferred by each 
particle so as to eliminating unnecessary mutations. Here a 
circled version is applied for each dimension, i.e. which 
provides an infinite vision while keeping )( t

Cx
�

∈S. 
As a dimension is rolled into a cycle, there are two 

directions for calculating the difference of two points on 
the cycle. Here the direction with a short distance is used. 

For , [ , ]a b d dx x x x∀ ∈ , a cycled 
( )d
∆  operator (called 

( )
C
d

∆ ) is: 

( )

IF / 2
   IF / 2

 ELSE

ab d

C
a b dab ab dd

ab

x x

x x xx x x

x

∆
∆

∆ ∆

∆

< −�
�= − >�
�
�

 
(15) 

where  dx = d dx x−  and  abx∆ = a bx x− . 

Finally, the dth dimension of )( t
Cx
�

 is repaired as: 

 ( )  ( )
, , ( )

,  ( )  ( )
, ,

( )%    IF  
=

( )%    IF  

t t
d d C d d C d dt

C d t t
d C d d d C d d

x x x x x x
x

x x x x x x

� − − <�
�

+ − >��
 

(16) 

The default parameter values include: Ca=Cb=2.05 [6]. 

5. Results and discussions 

All INFO elements in MA of all agents are initialized in 
S at random. By taking the initialization stage into account, 
total evaluation times (TE) can be calculated as: 

TE= N·(T+NMA) ≈ N·T (17) 

where NMA is the number of T_INFO elements in MA. 

  dab xx∆ +



By using three default RG instances, four RGTM cases 
with different wS value sets are listed in Table 2. 
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Case\RG SI
GR  DE

GR  PS
GR  

SI# 
� �

0 
DE# 

� �
0 

PS# 0 0 1 
DP# 0 0.5 0.5 

 
Here two function sets are used for evaluating the 

performance of the MAOSC cases. 
The low-dimensional function set contains those Dixon 

and Szegö functions [3] tested by Yao and Liu [31], which 
are generally considered as easy problems [27]. Table 3 
summaries their basic information (dimension D and 
optimum value f*) and published mean results by fast 
evolutionary programming (FEP) [31] averaged over 50 
runs. For each run of FEP, TE=10000. 
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Function [3] [31] D f* FEP[31]  

Branin (BR) 2 0.39789 0.398
Goldstein Price (GP) 2 3 3.02
Six Hump Camel (C6) 2 -1.03163 -1.03
Hartman3D (H3) 3 -3.86278 -3.86
Hartman 6D (H6) 6 -3.32237 -3.27
Shekel5 (S5) 4 -10.15318 -5.52
Shekel7 (S7) 4 -10.40292 -5.52
Shekel10 (S10) 4 -10.53639 -6.57

 
Table 4 summaries the mean results by MAOSC cases 

as N=10 and T=100 (TE ≈ 1000) averaged over 500 runs, 
where a result in boldface indicates that it is no worse than 
the result by FEP as in same precision. Here the SI# is not 
performed well. But it can be improved by incorporating a 
local search strategy [3] or by specifying larger N and T. 
Both PS# and DE# perform well for several cases. With 
their combinations of good features of PS# and DE#, DP# 
performs well in all cases by comparing to FEP in only 
tenth evaluation times. Besides, it also shows that 
sometimes DE# performs better than both PS# and DE#, 
e.g., H3, which may due to the interactions on shared Px

�
. 
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F SI# DE# PS# DP# 
BR 0.40787 0.39795 0.39789 0.39793
GP 3.24542 4.62017 3.00000 3.00589
C6 -1.02493 -1.03163 -1.03163 -1.03163
H3 -3.85608 -3.84933 -3.86070 -3.86278
H6 -3.23163 -3.29149 -3.26733 -3.27604
S5 -5.05961 -6.41440 -5.23902 -5.91482
S7 -6.00746 -7.10326 -5.75942 -6.96877
S10 -5.93186 -7.49203 -5.87551 -7.12365

Ho et al. [10] have tested seven algorithms, including 
IEA, OEGA, UEGA, TEGA, BLXGA, BOA [22] and 
OGA, for solving 10-D functions as TE=10000. Among 
these algorithms, BOA has the best performance [10]. 

Table 5 summaries the f*, the mean results by BOA in 
[10], and the mean results by MAOSC cases (except for 
SI#) as N=10 and T=1000 (TE ≈ 10000) averaged over 500 
runs. Here PS# performs better than BOA for 6 problems, 
while both DE# and DP# perform better than BOA for 10 
problems. For f1 and f9, DP# performs as No.3 and No.2 
among the algorithms used by Ho et al. [10], respectively. 
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F f* BOA [10] DE# PS# DP# 
f1 -12.1598 -12.151 -12.0943 -11.5503 -12.1201
f2 -18 -12.29 -16.1427 -15.8501 -15.9473
f3 0 0.77 0.034 3.276 0.002
f4 0 5.32 1.09689 13.48593 1.12454
f5 0 0.0077 4.84E-21 2.27E-12 2.38E-11
f6 -18.5027 -18.01 -18.0569 -13.5354 -18.1481
f7 0 0.019 0.00116 0.00130 0.00702
f8 0 0.93 0.11513 1.17806 0.01390
f9 0 8.4 152.7844 682.8690 90.6056
f10 0 8.93 5.26981 6.96009 5.1077
f11 0 10.067 1.348 7.192 0.416
f12 0 1.008 0.02544 0.14677 0.06032

6. Conclusions 

In this paper, we have proposed a compact multiagent 
system (MAOSC) based on autonomy oriented computing 
(AOC). Performed by a society of autonomous entities in 
iterative cycles, an optimization algorithm can simply be 
described by a macro generate-and-test behavior. 

The MAOSC system has the following characteristics: 
Firstly, it is a framework for realizing various numerical 

optimization algorithms in an easy way. Several existing 
algorithms, including particle swarm optimization (PSO), 
differential evolution (DE), and electromagnetism-like 
heuristic algorithm (EM), have been implemented. 

Secondly, it is a natural framework for comparing 
different generate-and-test behaviors. Based on a simple 
TOL, we may focus on their generating parts by utilizing 
some known properties of existing declarative knowledge. 

Thirdly, it is capable of producing macro algorithms by 
deploying some simple RG instances, where each covers a 
part of problems, for cooperative search. As shown in the 
experiments, the macro RGT rule performs better than each 
of its elemental RG instances on specified problem sets.  

Finally, it may provide a base towards realizing user-
oriented algorithms in future. The MAOSC is not intended 
to be a universal solver at all time. Instead, it is focused 
on the problems, which a certain user feels interested in, 
varied at different periods. The components of the RGTM 
rule, i.e., the deploying rule, the GOL and the TOL, are 



subjected to be evolvable for such a purpose. As time 
goes by, we may only focused on tackling those problems 
poorly solved by all existing RG instances while those 
obsolete RG instances may be discarded by some methods, 
e.g., minimum set cover, based on those solved examples. 
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