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Abstract: Process synthesis is a top -down design methodology 
and can effectively reduce the process design time. In this paper 
the general method and the neural network (NN) package used 
for process synthesis are discussed. Then the characteristics of 
synthesis some key process modules, includes the ion 
implantation and well formation, are analyzed, based on which 
the training set used to build the NN is generated. After that the 
NN model used for process modules synthesis is constructed and 
trained. Testing results show that this model can fulfill the 
process modules synthesis. 

 

1. Introduction 

Research on synthetic methodologies in circuit design 
has caused great changes in the IC design field and 
shortened the designing cycle sharply. An analogous idea 
named process synthesis, which meets similar goals in 
process field, was systematically described [1] recently. 
This is a top-down methodology in which the known 
conditions are the desired final process results and the goal 
is to deduce the correct process steps and parameters. 

Inverse modeling of manufacturing process is needed 
for process synthesis. But normally an inverse model can 
not be deduced from the process simulating model directly 
because the forward models based on numerical 
simulation [2] are usually highly nonlinear. The solution is 
to collect enough data and build some macro models. And 
nonlinear modeling technique based on neural networks 
(NN) has proved to be a powerful tool to build such macro 
models [3-7]. In this paper a basic inverse model for key 
process modules is built based on the multi-layer 
feed-forward NN. 

2. NN method for process synthesis 

Fig.1 is the general flowchart for the process synthesis 
by using NN. In the stage of task analysis, two things must 
be finished. The first thing is to find out the specification 
of the modeling task (The parameters that can be fixed and 
those should be set as variables), ignoring the minor 
factors so that the problem can be more succinct. After that 
the NN input and output elements should be extracted 
from the concrete problem. These elements are used 

instead of the original parameters to build the NN. Such 
treatment can reduce the network input noise, expand the 
network synthetic ability and cut down the network scale 
[3]. Both these two steps are important and based on detail 
analysis of the modeling requirement. This procedure is 
similar to the establishment of an "expert system" and 
needed the experience who builds the model [4]. 
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FIG. 1. The flowchart for process synthesis by using NN 

     
The object of data pre-process is to produce the training 

set of the NN, which represents the relationship of 
network inputs and outputs. If there is existent data that 
can be used, the pre-processing work will cost not so much 
time. Otherwise sufficient experiments are needed to be 
done to obtain such relationship [5]. 

After getting the training set, the NN model can be built. 
In this stage first the network topology structure (The 
number of network layers and the number of neurons in 
each layer) is defined, and then the network weight and 
bias matrices are obtained through training.  

When the building stage is finished, the NN model can 
be used to do the synthetic work. For different process 
steps and modules, the third and the fourth stages 
(Building the NN and Synthesis by using the built model) 
have a lot of common ground. To facilitate their 
performance, a multi-layer feed-forward NN package that 
can be used for process synthesis and other purposes is 
established. This package includes two parts. Part I is 
written with MATLAB and used for the definition and 
training of the network. Part II is written with C++. It 
utilizes the parameter file generated by part I to construct a 
NN. Once the training work is finished by part I, part II 
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can work as an executive program and can be run without 
MATLAB. Also, some methods in part II can be called by 
other C++ programs to build more comprehensive NN 
synthetic modules. The high effectiveness and reliability 
of MATLAB makes this package robust enough to 
establish the purposed NN, while the C++ part makes this 
package flexible enough to be used for system integration. 

3. Process synthesis applications 

In the following part we will use the theory and the tool 
package mentioned above to synthesize the inverse model 
for ion implantation and N-well formation process. 

3.1 Ion implantation 

A. Task analysis 

This model can deal with implanted profiles with 
following conditions: one type of substrate, one time of 
implantation, and using the Gaussian or single Pearson 
model in simulating procedure. 

Our model uses similar structure as in [4], but the inputs 
are changed to Rp and ∆Rp, the integral characters of the 
total profile, and the output is Energy. The Dose parameter 
is not included in the network output because it can be 
obtained directly from integrating the profile. 
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Here f(x) is the concentration at each point. 
Using what kind of data to work as the NN inputs is 

very important for the network scale and capability. In Ref. 
[4] the input data of the network are point concentrations 
at 10 fixed coordinates ranging from 0 to 1 µm. This 
method has some limitations. Normally there is noise at 
the tail of the profile and such noise can not be eliminated 
before putting the concentrations into the network. Also, 
the energy of this method can not be too high. For example, 
if the energy is 800keV, the occupied space of the profile 
is from 0 to above 1.5µm. So if with only 10 points that 
ranging from 0 to 1 µm can not represent the total profile. 
Of course, this problem can be solved by increasing the 
number of points, but it will enlarge the scale of the NN.  

B. Data pre-process 

In order to solve these issues effectively and at the same 
time to reduce the network scale, we do some pre -process 
on the profile first, that is, to extract some integral 
characters of the total profile and use these characters 
instead of point concentrations to build the network. When 
the profiles are generated by using Gaussian or Pearson 
model, Rp and ∆Rp are such characters.  
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Normally f(x) is 0 when x<0 (outside the substrate).  
Equations (2) and (3) can be changed into 
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Since the relationship between Rp, ∆Rp and Energy has 
been made in the lookup tables of simulators such as 
Tsuprem-4 [2]. We can use these data in the lookup table 
to construct the NN model.  

C. Building the neural network model 

It has been proven that multilayer feedforward NN with 
a nonpolynomial activation function can approximate any 
continuous function to any degree of accuracy [6]. 
Combining with the experience in [4], we construct a NN 
with two hidden layers and one output layer. The neurons 
in these layers are 7, 5, 1 (as in Fig.2 and Fig. 3), and the 
transfer functions are log sigmoid, log sigmoid, linear, 
respectively. The training set is part of the lookup table for 
boron with channeling in silicon [2], covering Energy 
from 5keV to 850keV.  

The training is done by MATLAB. The algorithm is 
Levenberg-Marquardt back-propagation. The epochs are 
6000 and the mean square error (MSE) is 0.006. 
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FIG. 2. Structure of the NN (Each cycle represents one neuron) 
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FIG. 3. Structure of one single neuron [7]: a = f(Wp+b) 
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C. Synthesis by using the built model 

Table 1 shows the result of this model. It can be seen 
that the synthetic result matches the simulating Dose and 
Energy quite well. 

Comparing with the model in [4], this basic model has a 
less network scale (2 inputs instead of 10 inputs) but can 
fit for a wider range of Energy (for boron, the range of 
Energy is expanded to 5keV–800keV). In addition, this 
basic model can effectively eliminate noise at some points 
since its inputs are integral characters of the total profile. 

 
TABLE 1. Test result of the basic model 

(Boron, Pearson model, simulating Dose=2.0e13 cm-2) 

Simulating 
Energy 
(keV) 

Simulating 
Dose 

(* 1e13cm-2) 

Synthesis 
Energy 
(keV) 

Synthesis 
Dose 

(*1e13cm-2) 

5 2.0 5.0312 1.9939 

15 2.0 15.0056 1.9995 

33 2.0 33.0799 2.0001 

55 2.0 54.9713 2.0002 

84 2.0 83.7428 2.0002 

550  2.0 545.656 2.0003 

3.2 N-Well formation 

A. Task analysis 

Well formation is normally the first and essential 
module of the MOS process. 

The purposed final wafer state of this module, which 
should be included in the NN inputs, is some of well 
characteristics. One of them is the surface concentration of 
silicon layer. The reason is that it can have substantial 
influence on the threshold voltage thus have effect on the 
process module of threshold voltage adjustment. Another 
well characteristic is well depth. 

Now let's analyze the process steps and parameters of N 
well generation. It usually includes 3 key steps: (1) Initial 
pad oxidization; (2) Ion implantation; (3) Drive-in (with 
high temperature and long time) 

The purpose of the first step is to generate an 
amorphous layer on the silicon surface. The thickness of 
the SiO2 is about 200 Å ~ 400 Å. This SiO2 layer will be 
etched immediately after the well formation.   

Step 2 provides an original total dose for the drive-in. 
Normally the implanting energy is set to a constant, while 
the implanting dose can be changed to obtain different 
final surface concentration of silicon layer. 

The purpose of step 3 is to obtain the relatively flat 
impurity distribution near the silicon surface and get the 
needed well depth. The temperature is very high 
(Normally it is no less than 1000 °C) and the drive-in time 
is long (normally it is no less than 2 hours).  

Two types of gas can be used during the step: oxygen 
and nitrogen. We select nitrogen here for the goal of 
simplifying the issue. Under such condition the thickness 
of the oxide layer will not be changed during the drive-in 
step. So when building the synthetic model the thickness 
of this layer can be fixed, which here is 250Å. 

Based on the above analysis, the number of process 
variables is reduced from 5 (the thickness of the initial pad 
oxide, implanting dose and energy, drive-in temperature 
and time) to 3 (implanting dose, drive-in temperature and 
time). Others are set to constants. But not all the 3 
variables should be used as NN outputs. The reason is that 
drive-in is a multi-to-one process. That means different 
sets of drive-in temperature and time may obtain the same 
curve shape of impurity. For a given impurity curve we 
can not determine its drive-in parameters unless one of 
them is known. So we assume that the drive-in 
temperature is known and set it as the third NN input. And 
the implanting dose and drive-in time are set as outputs. 

To ensure that the training work of the NN can be 
carried out, some mathematical process should be done on 
the original parameters. The actually NN inputs we use are: 
drive temperature, well depth, and base 10 logarithm of 
the silicon surface concentration minus 16. And the 
network outputs are: base 10 logarithm of the implanting 
dose minus 12, one tenth of the drive-in time. 

B. Data pre-process 

For the deep sub-micron process, the typical surface 
concentration of the silicon layer is about 5e16 cm-2, and 
the typical well depth is around 2µm. So the training set to 
be used, which represents the relationship of the network 
inputs and outputs, should cover this range. If we use the 
substrate concentration of 6e14cm-2, the well depth is 
defined as the distance from the point whose impurity 
concentration equals to 6e14 cm-2 to the surface point.  

The conditions we use to generate the training set are: 
� Substrate concentration: 6e14cm-3 
� Thickness of the initial pad oxide layer: 250 Å 
� Implanting energy: fixed at 100 keV 
� Implanting dose (cm-2): 3.9e12, 4.3e12, 4.4e12, 

4.5e12, 4.7e12, 5.1e12 
� Gas used during in drive-in : nitrogen 
� Drive-in temperature(°C): 1050, 1070, 1090 
� Drive-in time(hours): 2, 4, 6, 8, 10, 12, 14, 16, 18 
Under these conditions 162 curves are simulated. The 

network inputs and outputs are extracted from each curve 
to compose the training set. In this training set the well 
depth ranges from 0.93 µm to 3.65 µm while the surface 
concentration changes from about 1.23e17 to 2.66e16cm-3.  

Fig. 4 is a 2D figure and it gives out the actual range of 
well depth and surface concentration combination for the 
network inputs when the drive-in temperature equals 1050 
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°C.  And Fig.5 is a 3D figure that gives out the actual 
range of network inputs for the drive-in temperature 
ranges from 1050 °C to 1090 °C.  
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FIG. 4. The range of the network inputs when drive-in temperature is 1050 C 
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FIG. 5. The actual range of network inputs for the drive-in temperature 

ranges from 1050 °C to 1090 °C 

C. Building the neural network model 

The network structure is defined as: 
� 3 inputs: Drive-in temperature; Well depth; 

Logarithm of surface concentration minus 16; 
� 2 outputs: Logarithm of the Dose minus 12; One 

tenth of the drive-in time; 
� 4 layers of neurons; 
� The number of neurons in each layer is 18, 12, 9, 2. 
After the definition, the network is trained by using the 

general NN package. One thing should be mentioned is 
that all the training work is done under MATLAB 
environment. The tra ining epochs are 1400 and the final 
mean square error (MSE) is 1.44e -4. The algorithm used 
in the first 200 training epochs is RPROP 
back-propagation algorithm. And in the rest epochs it is 
BFGS quasi-Newton back-propagation algorithm. 

C. Synthesis by using the built model 

All the points (Not only the points used for training) 
in the regions shown in Fig. 4 (drive-in temperature =1050 

°C), or in Fig. 5 (drive-in temperature ranges from 1050 
°C to 1090 °C) can be used as the synthetic targets.  

It is shown that the built model can complete the 
synthesis of well formation (Table.2). When drive-in 
temperature equals 1060°C, the result of the example in 
table 1 is not as exact as others. The reason is that for this 
example the target needed to be synthesized is slightly out 
of the training range (Refer to Fig.5). 

 
TABLE 2.  Testing result of the well formation synthesis 

Purposed well depth (µm) 2 

Purposed surface concentration (cm -3) 5e16 

Purposed drive-in temperature (°C) 1050 1060 

Synthetic implanting dose (cm-2) 4.2160e12 3.9564e12 

Synthetic drive-in time (hours) 12.743 9.422 

Actual well depth (µm) 2.010 1.927 

Actual surface concentration (cm -3) 4.949e16 4.786e16 

Relative error of well depth 0.5% 3.65% 

Relative error of surface concentration 1.02% 4.28% 

4. Conclusion 

  Process synthesis is a newly important research field 
due to its ability to cut down the process designing time 
greatly. In this field the given conditions are the final 
wafer state and the object is to find out the appropriate 
process steps and parameters that can obtain such results. 
The nonlinear modeling methods based on NN have 
proved to be the powerful tools. 

In this paper, we introduce the theory and the tool 
package for process synthesis by using NN. As examples 
we use them to achieve the synthesis of ion implantation 
and well region formation. Testing results show that the 
synthetic model we build works effectively. 
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