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Abstract 
 
In this paper, the knowledge o f  qualitative relations 
between device parameters and characteristics, are 
incorporating to guide genetic algorithm to exploiting in 
the promising space. It makes device synthesis be more 
efficiently in searching for feasible design space, which 
satisfies the desired characteristics. 
 
 
Introduction 
 
To design devices with desired characteristics is an 
important step in TCAD for technology synthesis [1]. It 
needs a synthesis methodology to get workable devices 
automatically instead of the conventional approach that 
by employing design of experience (DoE) [2], which 
needs the experts to tune design parameters. 
 
Device synthesis is a nonlinear programming (NLP) 
problem, which can be performed through searching 
over the design space specified by designers. The 
requirements include: 1) because no explicit objective 
functions between parameters and characteristics are 
available for short channel devices, a global search 
strategy instead of gradient-based strategy should be 
employed to find the feasible results; 2)  because there 
exists process deviation for each device parameter, to 
identify a workable device, it is necessary to find a 
feasible region that satisfied all constraints by the desired 
characteristics instead only a feasible point. 
 
In our previous work [3], a prototype system for device 
synthesis is realized with a genetic algorithm, called 
GENOCOP [4], by calling device simulator to search 
feasible device parameters in the design space. It has 
been used to synthesis a FIBMOS device.  
 
However, the calculation times should be decreased 
because device simulator is time -consumptive. This 
work is focused on studying the methodology of 

incorporating knowledge in genetic algorithms to reduce 
calculation times. Since the knowledge of qualitative 
relations between device parameters and characteristics, 
which are monotonous in common, can guide genetic 
algorithms to exploiting in the promising space. The 
results show this methodology can improve the 
performance of device synthesis system efficiently. 
 
 
Prototype system for device synthesis 
 
The prototype synthesis system is summarized in Fig.1. 
 

Search algorithms ( GA)

Design
space (SD) Objectives

Device
simulator

Feasible space ( SF')
 

Fig. 1  System architecture of prototype system 
 
The input parameters of genetic algorithms include: 

 
a) Design space (SD), is a hyperspace that defined by a 
set of design parameters with the bounds. In this work, in 
order to prevent the found feasible points to be too 
clustered to represent a big feasible space, each 
parameter is divided by specified step (the magnitude 
about of process deviation is suitable) to discrete SD as 
an integer-value space. Each individual is a grid point. 
 
b) Objectives (include constraints) to specify the 
desired characteristics. We classify the objectives into: 
s MIN, minimize the objective value; 
s LET, the objective is less than a specified value; 
s REG, the objective is constrained in a region. 

Where the LET and REG are constraints.  
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Definition 1: The space in SD that satisfying all of the 
constraints is denoted as feasible space (SF). The 
infeasible space (SI) is the supplementary space of SF in 
SD. The summary of current found parts in SF  is SF’, and 
the summary of current found parts in SI is  SI’.  
 
The mission is to find feasible points more fast, and 
make SF’ similar to SF . For MIN objective, we consider 
the better solutions in SF’. 
 
 
Incorporating knowledge in GA (IKGA) 
 
Basic principle 
 
Suppose there have n parameters and m objectives. 
 
The matrix of relations MDT (m×n) 

 
Each element mdt in MDT is a relation between a 

parameter and an objective according to known 
knowledge. It defines the variety tendency of the 
characteristic value for an objective while the value of a 
parameter is increased, which includes four statuses: 
s CONSTANT, no change;  
s INCREASE , increasing;  
s DECREASE, decreasing; 
s UNKNOWN, unknown by users. 

 
Variety tendency of design parameters VD (n×1) 
 
Each element vd in VD represents how the current 
parameter value will be varied. It includes four statuses: 
s CONSTANT, no change; 
s INCREASE , value increases;  
s DECREASE, value deceases ;  
s UNKNOWN, unknown status (not be used). 

 
Variety tendency of characteristics VT (m×1) 
 
Each element vt in VT represents how the characteristic 
of an objective will be varied. It includes four statuses: 
s CONSTANT, no change;  
s INCREASE , value increase;  
s DECREASE, value decease;  
s UNKNOWN, unknown by users.  

 
Calculation laws from VD to VT 

 
If the MDT and VD are known, the following equation is 
used to calculate VT: 
 

MDTVD = VT       (1) 

 
The operations between the elements include: 
 
Add operations: 
 

UNKNOWN + * = UNKNOWN, 
CONSTANT + * = *, 
INCREA SE + DECREASE = UNKNOWN, 
* + * = *        (2a) 

 
And multiply operations: 
 

CONSTANT · * = CONSTANT, 
INCREASE · * = *, 
DECREASE · DECREASE = INCREASE, 
UNKNOWN · * = UNKNOWN  

(If  * != CONSTANT)    (2b) 
 
The operations satisfy the exchange law. The * represent 
any elements. 
 
Property 1: If the relation of ith (i<m) objective to jth 
(j<n) parameter is equal to UNKNOWN, and the jth 
element in VD is not equal to CONSTANT, then the ith 
element in VT will be equal to UNKNOWN. 
 
Needed variety tendency of objective VO (m×1) 
 
Each element vo in VO represents how the value of an 
objective should be varied to become an feasible 
objective. It includes four statuses: 
s CONSTANT, not need be changed; 
s INCREASE , need to increase; 
s DECREASE, need to decease; 
s UNKNOWN, can be changed arbitrary.  

 
Two steps are used to get the VO: 
 
a) Get objective relations Rtcd (m×1) 
 
Each element rtcd in Rtcd represents the magnitude 
between the current characteristics value (vcv) and the 
desired characteristics value (vdv) for an objective. It 
includes four statuses: 
s X,  can not compare (for a MIN objective);  
s EQ, i.e. vcv = vdv; 
s LA, i.e. vcv > vdv; 
s LE, i.e. vcv < vdv.  

 
b) Get VO from the types of objectives 
 
From the table 1, we can get the element vo by the 
element in Rtcd and the type of each objective. 



 

 

1145 

 
Table 1. vo in different rtcd and objective types  

 MIN LET REG 
X DECREASE - - 

EQ - DECREASE UNKNOWN 
LE - DECREASE INCREASE 
LA - UNKNOWN DECREASE 

 
Find infeasible and feasible space 
 
Definition 2: For an element in VT and an element in VO, 
if one of them is equal to UNKNOWN, then define the 
two elements are similar to each other. 
 
Definition 3: If all the elements in VT are similar or 
equal to the corresponding elements in VO, then defines 
VT is similar to VO.  
 
Property 2: For an individual, a VD will create a VT, if 
VT is not similar to VO, then the space that specified by 
VD is infeasible space. 
 
Property 3: For a feasible point p1, if all the elements in 
VT from a VD  are not equal to UNKNOWN, and another 
feasible point p2 is belong to the space that specified by 
the point p1 and the VD, then the child space that the 
bound are specified by the p1 and p2 is feasible space. 
 
Robust calculation and times reduction 
 
Definition 4: For a MDT, a variety of VD and the 
calculated VT are defined as a relation couple (CDT). 
 
Definition 5: For the VT in a CDT, if one of the elements 
is not UNKNOWN, then defines it as an effective 
relation couple (CEDT). 
 
Definition 6: For a matrix that is constructed by some 
rows and columns of MDT, if it includes no UNKNOWN 
elements, then defines it as a child determinate relation 
matrix (MCDT). 
 
Definition 7: If a MCDT is not a subset  of any other MCDT 
of MDT, then define it as a maximum child determinate 
relation matrix (MMCDT). 

 
To find CDTs for a MMCDT that constructed by n’ 

parameters (n’ =n) and m’ (m’ =m) targets, the VD’ is 
treated as a child scheme of VD, while the other n-n’ 
parameters of VD  are set to CONSTANT. 

 
Property 4: The set of CDTs of all the MMCDT represent 

all the CEDTs of MDT.  

Realization of IKGA 
 

The program diagram of IKGA is shown in fig. 2. 
 

Initialization

Find all the
CEDT (VD+VT)

MDT

Create VO

CEDTs
Compare

VO & CEDTs

SF' & SI'
(Adaptive Memory)

Synthesis System
(Genetic algorithm

 + Device Simulater)

objectives

indivdual & characteristics

 
Fig. 2  Principle diagram of IKGA  

 
On the initial stage, we find and store all the CEDTs for 

given MDT. When GA creates a new individual, device 
simulator is used to get the characteristics. With the 
information of objectives, we can create the VO. If the 
individual is infeasible, then the VO is compared to the 
stored CEDTs and gets the infeasible space according to 
property 2. If the individual is feasible, then check all the 
other feasible points, and get the feasible space 
according to property 3. The found SF’ and SI’ are used 
to accelerate the evolution. 

 
An adaptive memory is employing in GENOCOP to 
manage all the found infeasible space SI’ and feasible 
spaces SF’, which are used to guide performing genetic 
operations in the promising space, while the points that 
located at the boundary of the SI’ or SF’ are selected as 
parents with large probability.  
 
 
Results 
 
The different MDTs in table 2 are used to test IKGA (the 
case iiii can be seemed as original genetic algorithm). 
The other algorithm settings are same, for each MDT, the 
algorithm is performed 11 times (runs) and the least 
favorable one is disregarded. 
 

Table 2. The different MDT for IKGA  
 Leff Tox 

Ion DECREASE DECREASE 
Ioff DECREASE DECREASE 

(i) 
 Leff Tox 

Ion UNKNOWN DECREASE 
Ioff DECREASE DECREASE 



 

 

1146 

 (ii) 
 Leff Tox 

Ion UNKNOWN UNKNOWN 
Ioff DECREASE DECREASE 

 (iii) 
 Leff Tox 

Ion UNKNOWN UNKNOWN 
Ioff UNKNOWN UNKNOWN 

(iiii) 
 

The example is design a MOS device, which the design 
parameters include channel length Leff that is 0.35 ~ 
0.45µm and oxide thickness Tox that is 0.0025 ~ 
0.0075µm, and the desired characteristics include the 
drive current Ion and off-state current Ioff. The acceptable 
relative error is set to 1%. Two conditions for different 
SF/SD are tested: 
 
a)  Ion=2e-3A, Ioff<4.3E-13A. SF/SD=98/10201 
b)  Ion=2e-3A, Ioff<4.04E-13A. SF/SD=144/1002001 
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a)  SF/SD=98/10201  
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b)  SF/SD=144/1002001 

Fig. 3  Number of feasible points vs. calculation times 
with different MDTs 

 
Fig. 3 shows the relations between the number of 
feasible points and the average calculation times in 

different MDT for different SF/SD. It can see more 
elements that are not UNKOWN in MDT can make the 
algorithm to perform searching efficiently, not only the 
first feasible point, but also a set of feasible points that 
are used to describe SF’. 
 
 
Conclusion 
 
In this paper, we have proposed IKGA, an efficient and 
robust algorithm by incorporating knowledge in genetic 
algorithms to identify the feasible and infeasible space 
efficiently. The adaptive memory feature allows the 
implementation of procedures that are capable of 
searching the solution space economically and 
effectively. It is suitable for synthesizing the 
semiconductor devices, because many relations between 
device parameters and characteristic are monotonous. 
 
Further explorations may concentrate on incorporating: 1) 
the single-peak relation, which is the second frequently 
relation between device parameters and characteristics, 
by identifying the monotonous parts; 2) linkage learning 
[5] for UNKOWN elements. 
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