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Abstract - An adaptive particle swarm optimization 
(PSO) on individual level is presented. By analyzing 
the social model of PSO, a replacing criterion based 
on the diversity of fitness between current particle 
and the best historical experience is introduced to 
maintain the social attribution of swarm adaptively 
by taking off inactive particles. The testing of three 
benchmark functions indicates it improves the 
average performance effectively. 
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1. Introduction 

 Modern heuristic algorithms are considered as 

practical tools for nonlinear optimization problems, 

which do not require that the objective function to be 

differentiable or be continuous. The particle swarm 

optimization (PSO) algorithm [1] is an evolutionary 

computation technique, which is inspired by social 

behavior of swarms. It has been used for approaches 

that can be used across a wide range of applications, as 

well as for specific applications focused on a specific 

requirement [2]. 

 Work presented in [3] describes the complex task of 

parameter selection in the PSO model. PSO has been 

proved to be a competitor to the standard genetic 

algorithm (GA). Comparisons between PSO and GA 

were done with regards to performance by Angeline [4], 

which points out that the PSO performs well in the early 

iterations, but has problems in reaching a near optimal 

solution in several benchmark functions.  

 To overcome this problem, some researchers have 

employed methods with adaptive parameters [5, 6]. One 

is deterministic mode, which the PSO parameters are 

changed according to the deterministic rules, such as a 

linear decreased inertia weight as the number of 

generation increasing [5], which are obtained according 

to the experience. The other is adaptive mode, which 

adjusts the parameters according to the feedback 

information, such as fuzzy adaptive inertia weight [6]. 

However, currently, we still have not captured the 

relations between different parameters and their effects 

toward different problem instances, such as dynamic 

optimization problems [2], due to the complex 

relationship among parameters. 

 Unlike the former efforts on adjusting PSO parameters, 

this paper will propose an efficient approach by adapting 

the swarm on individual level, which is realized by 

replacing the inactive particle with a fresh one in order to 

maintain the social attribution of swarm, according to the 

analyzing for the model of PSO. Both standard and 

adaptive versions are compared on three benchmark 

problems. The results suggest that the adaptive PSO 

enhance the performance effectively. 

2. Standard particle swarm optimization (SPSO) 

 PSO is similar to the other evolutionary algorithms in 

that the system is initialized with a population of 

random solutions. Each potential solution, call particles, 

flies in the D-dimensional problem space with a 

velocity which is dynamically adjusted according to the 

flying experiences of its own and its colleagues. The 

location of the ith particle is represented as Xi = (xi1,…, 
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xid, …, xiD). The best previous position (which giving 

the best fitness value) of the ith particle is recorded and 

represented as Pi = (pi1,…, pid, …, piD), which is also 

called pbest. The index of the best pbest among all the 

particles is represented by the symbol g. The location Pg 

is also called gbest. The velocity for the ith particle is 

represented as Vi = (vi1,…, vid, …, viD). 

 The particle swarm optimization concept consists of, 

at each time step, changing the velocity and location of 

each particle toward its pbest and gbest locations 

according to the equations (1a) and (1b), respectively: 

  vid = w * vid + c1 * rand() * (pid -xid)  

    + c2 * rand() * (pgd -xid)        (1a) 

  xid = xid + vid              (1b) 

Where w is inertia weight, c1 and c2 are acceleration 

constants [2], and rand() is a random function in the 

range [0, 1]. For equation (1a), the first part represents 

the inertia of pervious velocity; the second part is the 

“cognition” part, which represents the private thinking 

by itself; the third part is the “social” part, which 

represents the cooperation among the particles [7]. Vi is 

clamped to a maximum velocity Vmax = (vmax,1,…, 

vmax,d, …, vmax,D). Vmax determines the resolution with 

which regions between the present and the target 

position are searched [2]. 

 The process for implementing PSO is as follows: 

a). Set current iteration generation Gc=1. Initialize a 

population which including m particles, For the ith 

particle, it has random location Xi in specified space and 

for the dth dimension of Vi, vid = Rand2() * vmax,d, where  

Rand2() is a random value in the range [-1, 1];  

b). Evaluate the fitness for each particle; 

c). Compare the evaluated fitness value of each 

particle with its pbest. If current value is better than 

pbest, then set the current location as the pbest location.  

Furthermore, if current value is better than gbest, then 

reset gbest to the current index in particle array; 

d). Change the velocity and location of the particle 

according to the equations (1a) and (1b), respectively;  

e). Gc=Gc +1, loop to step b) until a stop criterion is 

met, usually a sufficiently good fitness value or Gc is 

achieve a predefined maximum generation Gmax. 

 The parameters of PSO includes: number of particles 

m, inertia weight w, acceleration constants c1 and c2, 

maximum velocity Vmax. 

3. Adaptive particle swarm optimization (APSO) 

 As evolution goes on, the swarm might undergo an 

undesired process of diversity loss. Some particles 

become inactively while lost both of the global and local 

search capability in the next generations. For a particle, 

the lost of global search capability means that it will be 

only flying within a quite small space, which will be 

occurs when its location and pbest is close to gbest (if 

the gbest has not significant change) and its velocity is 

close to zero (for all dimensions) according to the 

equation (1); the lost of local search capability means 

that the possible flying cannot lead perceptible effect on 

its fitness. From the theory of self-organization [8], if 

the system is going to be in equilibrium, the evolution 

process will be stagnated. If gbest is located in a local 

optimum, then the swarm becomes premature 

convergence as all the particles become inactively. 

 To stimulate the swarm with sustainable development, 

the inactive particle should be replaced by a fresh one 

adaptively so as to keeping the non-linear relations of 

feedback in equation (1) efficiently by maintaining the 

social diversity of swarm. 

 However, it is hard to identify the inactive particles, 

since the local search capability of a particle is highly 

depended on the specific location in the complex fitness 

landscape for different problems.  

 Fortunately, the precision requirement for fitness 

value is more easily to be decided for specified problem. 

The adaptive PSO is executed by substituting the step d) 

of standard PSO process, as the pseudocode of adaptive 

PSO that is shown in Fig. 1. Fi is the fitness of the ith 

particle, Fgbest is the fitness of gbest. ∆ Fi = f(Fi, Fgbest), 

where f(x) is a error function. The ε  is a predefined 

critical constant according to the precision requirement. 
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Tc is the count constant. The replace() function is 

employed to replace the ith particle, where the Xi and Vi 

is reinitialized by following the process in step a) of 

standard PSO, and its pbest is equal to Xi. 

 The array similarCount[i] is employed to store the 

counts which is satisfying the condition | ∆ Fi| < ε  in 

successively for the ith particle which is not gbest. The 

inactive particle is natural to satisfy the replace 

condition; however, if the particle is not inactively, it 

has less chance to be replaced as Tc increases. 

 

  int[] similarCount = new int[m]; // at initialization stage 

  // Next code is employed to replace step d) 

  // in standard PSO process 

  FOR (i=0; i<m; i++) {      // for each particle 

   IF (i!=g && | ∆ Fi| < ε ) 

    THEN similarCount[i] ++;  // add 1 

   ELSE  similarCount[i] = 0;   // reset 

   IF (similarCount[i]> Tc)   // predefined count 

    THEN replace (the ith particle); 

   ELSE  execute (step d) in standard PSO); 

  } 

FIG. 1 Inserted pseudocode of adaptive PSO 

4. Results and discussion 

 For comparison, three benchmark functions that are 

commonly used in the evolutionary computation 

literature [4-6] are used. All functions have same 

minimum value, which are equal to zero. 

 The function f1 is the Rosenbrock function: 
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 The function f3 is the generalized Griewank function: 
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 For the purpose of comparison, the asymmetric 

initialization method used in [4-6] is adopted here for 

population initialization. Table 1lists the initialization 

ranges, and table 2 lists the Vmax and Xmax values for all 

the functions, respectively. The acceleration constants 

are set as: c1 = c2=2. The fitness value is set as function 

value. We had 500 trial runs for every instance. 

 For APSO, ∆ Fi is set as a relative error function, 

which is (Fi-Fgbest)/MIN(ABS(Fi), ABS(Fgbest)), where 

ABS(x) gets the absolute value of x, MIN(x1, x2) gets the 

minimum value between x1 and x2. The critical constant 

ε  is set as 1e-4, and the count constant Tc is set as 3. 

 In order to investigate whether the adaptive PSO 

scales well or not, different numbers of particles m are 

used for each function which different dimensions. The 

numbers of particles m are 20, 40, 80 and 160. Gmax is 

set as 1000, 1500 and 2000 generations corresponding 

to the dimensions 10, 20 and 30, respectively. 

 

Table 1: Asymmetric initialization ranges 
Function Asymmetric Initialization Range 

f1 (15,30) 
f2 (2.56,5.12) 
f3 (300,600) 

 

Table 2: Vmax and Xmax values for each function 
Function Xmax Vmax 

f1 100 100 
f2 10 10 
f3 600 600 

  

TABLE 3: The mean fitness values for the Rosenbrock function 

m D. Gmax SPSOL
[5] FPSO[6] SPSO0.4 APSO 

10 1000 96.1715 66.01409 44.1374 28.8179 

20 1500 214.6764 108.2865 87.2810 62.0391 20 

30 2000 316.4468 183.8037 132.5973 95.5643 

10 1000 70.2139 48.76523 24.3512 16.4028 

20 1500 180.9671 63.88408 47.7243 37.1774 40 

30 2000 299.7061 175.0093 66.6341 57.3000 

10 1000 36.2945 15.81645 15.3883 11.6443 

20 1500 87.2802 45.99998 40.6403 32.5682 80 

30 2000 205.5596 124.4184 63.4453 55.2538 

10 1000 24.4477 - 11.6283 6.9480 

20 1500 72.8190 - 28.9142 25.9617 160 

30 2000 131.5866 - 56.6689 45.6651 
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TABLE 4: The mean fitness values for the Rastrigrin function 

m D Gmax SPSOL
[5] FPSO[6] SPSO0.4 APSO 

10 1000 5.5572 4.955165 9.9483 1.3593 

20 1500 22.8892 23.27334 44.3457 9.4018 20 

30 2000 47.2941 48.47555 97.0551 24.4042 

10 1000 3.5623 3.283368 5.6853 0.4774 

20 1500 16.3504 15.04448 29.5543 4.6171 40 

30 2000 38.5250 35.20146 68.028 12.8490 

10 1000 2.5379 2.328207 3.5988 0.0748 

20 1500 13.4263 10.86099 20.6500 2.3226 80 

30 2000 29.3063 22.52393 49.3440 7.2542 

10 1000 1.4943 - 2.1890 0.0020 

20 1500 10.3696 - 15.3106 0.9620 160 

30 2000 24.0864 - 37.0096 4.0646 

 
TABLE 5: The mean fitness values for the Griewank function 

m D. Gmax SPSOL
[5] FPSO[6] SPSO0.4 APSO 

10 1000 0.0919 0.091623 0.09203 0.06817 

20 1500 0.0303 0.027275 0.03174 0.02589 20 

30 2000 0.0182 0.02156 0.0482 0.02318 

10 1000 0.0862 0.075674 0.07617 0.05566 

20 1500 0.0286 0.031232 0.02272 0.02107 40 

30 2000 0.0127 0.012198 0.01527 0.01359 

10 1000 0.0760 0.068323 0.06581 0.05258 

20 1500 0.0288 0.025956 0.02217 0.02037 80 

30 2000 0.0128 0.014945 0.01208 0.01049 

10 1000 0.0628 - 0.05773 0.04344 

20 1500 0.0300 - 0.0215 0.01817 160 

30 2000 0.0127 - 0.01208 0.01037 

 

 Table 3 to 5 lists the mean fitness values for the three 

benchmark functions. Where SPSO is the results of 

standard PSO in [5] with a linearly decreasing w which 

from 0.9 to 0.4, FPSO is the results of fuzzy adaptive 

PSO in [6] with fuzzy adaptive w, and SPSO0.4 is the 

results of standard PSO with w=0.4 as an version for 

comparison, APSO is the results of adaptive PSO in this 

work with w=0.4. 

 By compare the results, it is easy to see that APSO 

have better results than all of other PSO version for 

almost all cases. For example, as SPSO0.4 get worst 

solutions due to premature convergence for Rastrigrin 

function, the adaptive version APSO has the capacity to 

sustainable development. It means that the adaptive 

PSO has the capacity to achieve high performance. 

5. Conclusion 

 In this paper, an adaptive particle swarm optimizer 

was introduced to improve the performance. The 

adaptive criterion is appended on individual level. Since 

the critical constant ε  is decided by the precision 

requirement to fitness, it is more easily to be decided for 

different problems. Three benchmark functions have 

been used for testing. The simulation results illustrate 

the performance of adaptive PSO can improve the 

performance. This adaptive method may be also used 

for other evolutionary computation technologies, such 

as genetic algorithms. 
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