
0-7803-7488-6/02/$17.00 ©2002 IEEE. 1215

Adaptive Particle Swarm Optimization on Individual Level

Xiao-Feng Xie, Wen-Jun Zhang, Zhi-Lian Yang

Institute of Microelectronics, Tsinghua University, Beijing 100084, P.R.China

Email: xiexiaofeng@tsinghua.org.cn

Abstract - An adaptive particle swarm optimization
(PSO) on individual level is presented. By analyzing
the social model of PSO, a replacing criterion based
on the diversity of fitness between current particle
and the best historical experience is introduced to
maintain the social attribution of swarm adaptively
by taking off inactive particles. The testing of three
benchmark functions indicates it improves the
average performance effectively.
Key words: adaptive particle swarm optimization,
evolutionary computation, social model

1. Introduction

 Modern heuristic algorithms are considered as

practical tools for nonlinear optimization problems,

which do not require that the objective function to be

differentiable or be continuous. The particle swarm

optimization (PSO) algorithm [1] is an evolutionary

computation technique, which is inspired by social

behavior of swarms. It has been used for approaches

that can be used across a wide range of applications, as

well as for specific applications focused on a specific

requirement [2].

 Work presented in [3] describes the complex task of

parameter selection in the PSO model. PSO has been

proved to be a competitor to the standard genetic

algorithm (GA). Comparisons between PSO and GA

were done with regards to performance by Angeline [4],

which points out that the PSO performs well in the early

iterations, but has problems in reaching a near optimal

solution in several benchmark functions.

 To overcome this problem, some researchers have

employed methods with adaptive parameters [5, 6]. One

is deterministic mode, which the PSO parameters are

changed according to the deterministic rules, such as a

linear decreased inertia weight as the number of

generation increasing [5], which are obtained according

to the experience. The other is adaptive mode, which

adjusts the parameters according to the feedback

information, such as fuzzy adaptive inertia weight [6].

However, currently, we still have not captured the

relations between different parameters and their effects

toward different problem instances, such as dynamic

optimization problems [2], due to the complex

relationship among parameters.

 Unlike the former efforts on adjusting PSO parameters,

this paper will propose an efficient approach by adapting

the swarm on individual level, which is realized by

replacing the inactive particle with a fresh one in order to

maintain the social attribution of swarm, according to the

analyzing for the model of PSO. Both standard and

adaptive versions are compared on three benchmark

problems. The results suggest that the adaptive PSO

enhance the performance effectively.

2. Standard particle swarm optimization (SPSO)

 PSO is similar to the other evolutionary algorithms in

that the system is initialized with a population of

random solutions. Each potential solution, call particles,

flies in the D-dimensional problem space with a

velocity which is dynamically adjusted according to the

flying experiences of its own and its colleagues. The

location of the ith particle is represented as Xi = (xi1,…,

 International Conference on Signal Processing (ICSP), Beijing, China, 2002: 1215-1218

[Cooperative Group Optimization] http://www.wiomax.com/optimization

 1216

xid, …, xiD). The best previous position (which giving

the best fitness value) of the ith particle is recorded and

represented as Pi = (pi1,…, pid, …, piD), which is also

called pbest. The index of the best pbest among all the

particles is represented by the symbol g. The location Pg

is also called gbest. The velocity for the ith particle is

represented as Vi = (vi1,…, vid, …, viD).

 The particle swarm optimization concept consists of,

at each time step, changing the velocity and location of

each particle toward its pbest and gbest locations

according to the equations (1a) and (1b), respectively:

 vid = w * vid + c1 * rand() * (pid -xid)

 + c2 * rand() * (pgd -xid) (1a)

 xid = xid + vid (1b)

Where w is inertia weight, c1 and c2 are acceleration

constants [2], and rand() is a random function in the

range [0, 1]. For equation (1a), the first part represents

the inertia of pervious velocity; the second part is the

“cognition” part, which represents the private thinking

by itself; the third part is the “social” part, which

represents the cooperation among the particles [7]. Vi is

clamped to a maximum velocity Vmax = (vmax,1,…,

vmax,d, …, vmax,D). Vmax determines the resolution with

which regions between the present and the target

position are searched [2].

 The process for implementing PSO is as follows:

a). Set current iteration generation Gc=1. Initialize a

population which including m particles, For the ith

particle, it has random location Xi in specified space and

for the dth dimension of Vi, vid = Rand2() * vmax,d, where

Rand2() is a random value in the range [-1, 1];

b). Evaluate the fitness for each particle;

c). Compare the evaluated fitness value of each

particle with its pbest. If current value is better than

pbest, then set the current location as the pbest location.

Furthermore, if current value is better than gbest, then

reset gbest to the current index in particle array;

d). Change the velocity and location of the particle

according to the equations (1a) and (1b), respectively;

e). Gc=Gc +1, loop to step b) until a stop criterion is

met, usually a sufficiently good fitness value or Gc is

achieve a predefined maximum generation Gmax.

 The parameters of PSO includes: number of particles

m, inertia weight w, acceleration constants c1 and c2,

maximum velocity Vmax.

3. Adaptive particle swarm optimization (APSO)

 As evolution goes on, the swarm might undergo an

undesired process of diversity loss. Some particles

become inactively while lost both of the global and local

search capability in the next generations. For a particle,

the lost of global search capability means that it will be

only flying within a quite small space, which will be

occurs when its location and pbest is close to gbest (if

the gbest has not significant change) and its velocity is

close to zero (for all dimensions) according to the

equation (1); the lost of local search capability means

that the possible flying cannot lead perceptible effect on

its fitness. From the theory of self-organization [8], if

the system is going to be in equilibrium, the evolution

process will be stagnated. If gbest is located in a local

optimum, then the swarm becomes premature

convergence as all the particles become inactively.

 To stimulate the swarm with sustainable development,

the inactive particle should be replaced by a fresh one

adaptively so as to keeping the non-linear relations of

feedback in equation (1) efficiently by maintaining the

social diversity of swarm.

 However, it is hard to identify the inactive particles,

since the local search capability of a particle is highly

depended on the specific location in the complex fitness

landscape for different problems.

 Fortunately, the precision requirement for fitness

value is more easily to be decided for specified problem.

The adaptive PSO is executed by substituting the step d)

of standard PSO process, as the pseudocode of adaptive

PSO that is shown in Fig. 1. Fi is the fitness of the ith

particle, Fgbest is the fitness of gbest. ∆ Fi = f(Fi, Fgbest),

where f(x) is a error function. The ε is a predefined

critical constant according to the precision requirement.

 1217

Tc is the count constant. The replace() function is

employed to replace the ith particle, where the Xi and Vi

is reinitialized by following the process in step a) of

standard PSO, and its pbest is equal to Xi.

 The array similarCount[i] is employed to store the

counts which is satisfying the condition | ∆ Fi| < ε in

successively for the ith particle which is not gbest. The

inactive particle is natural to satisfy the replace

condition; however, if the particle is not inactively, it

has less chance to be replaced as Tc increases.

 int[] similarCount = new int[m]; // at initialization stage

 // Next code is employed to replace step d)

 // in standard PSO process

 FOR (i=0; i<m; i++) { // for each particle

 IF (i!=g && | ∆ Fi| < ε)

 THEN similarCount[i] ++; // add 1

 ELSE similarCount[i] = 0; // reset

 IF (similarCount[i]> Tc) // predefined count

 THEN replace (the ith particle);

 ELSE execute (step d) in standard PSO);

 }

FIG. 1 Inserted pseudocode of adaptive PSO

4. Results and discussion

 For comparison, three benchmark functions that are

commonly used in the evolutionary computation

literature [4-6] are used. All functions have same

minimum value, which are equal to zero.

 The function f1 is the Rosenbrock function:

 �
−

=
+ −+−=

1

1

222
11))1()(100()(

D

d
ddd xxxxf (2a)

 The function f2 is the generalized Rastrigrin function:

 �
=

+−=
D

d
dd xxxf

1

2
2)10)2cos(10()(π (2b)

 The function f3 is the generalized Griewank function:

 � ∏
= =

+��
�

�
�
�
�

�
−=

D

d

D

d

d
d

d

x
xxf

1 1

2
3 1cos

4000
1

)((2c)

 For the purpose of comparison, the asymmetric

initialization method used in [4-6] is adopted here for

population initialization. Table 1lists the initialization

ranges, and table 2 lists the Vmax and Xmax values for all

the functions, respectively. The acceleration constants

are set as: c1 = c2=2. The fitness value is set as function

value. We had 500 trial runs for every instance.

 For APSO, ∆ Fi is set as a relative error function,

which is (Fi-Fgbest)/MIN(ABS(Fi), ABS(Fgbest)), where

ABS(x) gets the absolute value of x, MIN(x1, x2) gets the

minimum value between x1 and x2. The critical constant

ε is set as 1e-4, and the count constant Tc is set as 3.

 In order to investigate whether the adaptive PSO

scales well or not, different numbers of particles m are

used for each function which different dimensions. The

numbers of particles m are 20, 40, 80 and 160. Gmax is

set as 1000, 1500 and 2000 generations corresponding

to the dimensions 10, 20 and 30, respectively.

Table 1: Asymmetric initialization ranges
Function Asymmetric Initialization Range

f1 (15,30)
f2 (2.56,5.12)
f3 (300,600)

Table 2: Vmax and Xmax values for each function
Function Xmax Vmax

f1 100 100
f2 10 10
f3 600 600

TABLE 3: The mean fitness values for the Rosenbrock function

m D. Gmax SPSOL
[5] FPSO[6] SPSO0.4 APSO

10 1000 96.1715 66.01409 44.1374 28.8179

20 1500 214.6764 108.2865 87.2810 62.0391 20

30 2000 316.4468 183.8037 132.5973 95.5643

10 1000 70.2139 48.76523 24.3512 16.4028

20 1500 180.9671 63.88408 47.7243 37.1774 40

30 2000 299.7061 175.0093 66.6341 57.3000

10 1000 36.2945 15.81645 15.3883 11.6443

20 1500 87.2802 45.99998 40.6403 32.5682 80

30 2000 205.5596 124.4184 63.4453 55.2538

10 1000 24.4477 - 11.6283 6.9480

20 1500 72.8190 - 28.9142 25.9617 160

30 2000 131.5866 - 56.6689 45.6651

 1218

TABLE 4: The mean fitness values for the Rastrigrin function

m D Gmax SPSOL
[5] FPSO[6] SPSO0.4 APSO

10 1000 5.5572 4.955165 9.9483 1.3593

20 1500 22.8892 23.27334 44.3457 9.4018 20

30 2000 47.2941 48.47555 97.0551 24.4042

10 1000 3.5623 3.283368 5.6853 0.4774

20 1500 16.3504 15.04448 29.5543 4.6171 40

30 2000 38.5250 35.20146 68.028 12.8490

10 1000 2.5379 2.328207 3.5988 0.0748

20 1500 13.4263 10.86099 20.6500 2.3226 80

30 2000 29.3063 22.52393 49.3440 7.2542

10 1000 1.4943 - 2.1890 0.0020

20 1500 10.3696 - 15.3106 0.9620 160

30 2000 24.0864 - 37.0096 4.0646

TABLE 5: The mean fitness values for the Griewank function

m D. Gmax SPSOL
[5] FPSO[6] SPSO0.4 APSO

10 1000 0.0919 0.091623 0.09203 0.06817

20 1500 0.0303 0.027275 0.03174 0.02589 20

30 2000 0.0182 0.02156 0.0482 0.02318

10 1000 0.0862 0.075674 0.07617 0.05566

20 1500 0.0286 0.031232 0.02272 0.02107 40

30 2000 0.0127 0.012198 0.01527 0.01359

10 1000 0.0760 0.068323 0.06581 0.05258

20 1500 0.0288 0.025956 0.02217 0.02037 80

30 2000 0.0128 0.014945 0.01208 0.01049

10 1000 0.0628 - 0.05773 0.04344

20 1500 0.0300 - 0.0215 0.01817 160

30 2000 0.0127 - 0.01208 0.01037

 Table 3 to 5 lists the mean fitness values for the three

benchmark functions. Where SPSO is the results of

standard PSO in [5] with a linearly decreasing w which

from 0.9 to 0.4, FPSO is the results of fuzzy adaptive

PSO in [6] with fuzzy adaptive w, and SPSO0.4 is the

results of standard PSO with w=0.4 as an version for

comparison, APSO is the results of adaptive PSO in this

work with w=0.4.

 By compare the results, it is easy to see that APSO

have better results than all of other PSO version for

almost all cases. For example, as SPSO0.4 get worst

solutions due to premature convergence for Rastrigrin

function, the adaptive version APSO has the capacity to

sustainable development. It means that the adaptive

PSO has the capacity to achieve high performance.

5. Conclusion

 In this paper, an adaptive particle swarm optimizer

was introduced to improve the performance. The

adaptive criterion is appended on individual level. Since

the critical constant ε is decided by the precision

requirement to fitness, it is more easily to be decided for

different problems. Three benchmark functions have

been used for testing. The simulation results illustrate

the performance of adaptive PSO can improve the

performance. This adaptive method may be also used

for other evolutionary computation technologies, such

as genetic algorithms.

References
[1] J. Kennedy, R. Eberhart. Particle swarm optimization. Proc.

IEEE Int. Conf. on Neural Networks, 1995: 1942-1948

[2] R. Eberhart, Y. Shi. Particle swarm optimization: developments,

applications and resources. IEEE Int. Conf. on Evolutionary

Computation, 2001: 81-86

[3] Y. Shi, R. Eberhart. Parameter selection in particle swarm

optimization. Proc. of 7th Annual Conf. on Evolutionary

Programming, 1998: 591-600

[4] P. J. Angeline. Evolutionary optimization versus particle swarm

optimization: philosophy and performance difference. Proc. of

7th Annual Conf. on Evolutionary Programming, 1998: 601-610

[5] Y. Shi, R. Eberhart. Empirical study of particle swarm

optimization. Proc. of Congress on Evolutionary Computation,

1999: 1945-1950

[6] Y. Shi, R. Eberhart. Fuzzy adaptive particle swarm optimization.

IEEE Int. Conf. on Evolutionary Computation, 2001: 101-106

[7] J. Kennedy. The particle swarm: social adaptation of knowledge.

IEEE Int. Conf. on Evolutionary Computation, 1997: 303-308

[8] G. Nicolis, I. Prigogine. Self-organization in nonequilibrium

systems: from dissipative systems to order through fluctuations.

John Wiley, NY, 1977

