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Abstract A multiagent fusion search is presented for the graph coloring problem.
In this method, each of agents performs the fusion search, involving a local search
working in a primary exploitation role and a recombination search in a navigation
role, with extremely limited memory and interacts with others through a decentralized
protocol, thus agents are able to explore in parallel as well as to achieve a collective
performance. As the knowledge components implemented with available structural
information and in formalized forms, the Quasi-Tabu local search and grouping-based
recombination rules are especially useful in addressing neutrality and ruggedness of
the problem landscape. The new method has been tested on some hard benchmark
graphs, and has been shown competitive in comparison with several existing algo-
rithms. In addition, the method provides new lower bound solutions when applied
to two large graphs. Some search characteristics of the proposed method is also dis-
cussed.

Keywords Graph coloring · Global optimization · Multiagent system

1 Introduction

Let G = (V ,E) be an undirected graph, where V is a set of vertices and E is a set
of edges, the graph coloring problem (GCP) is to partition V into K color classes,
where each is a subset of V labeled with same color. For a proper coloring, each
color class forms an independent set, which has no adjacent vertices. GCP is one
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of the most notorious models in graph theory: to compute the exact χ of an arbi-
trary graph requires the time O(2.4422|V |) (Eppstein 2003), and to color a graph
with χ + 2 · �χ

3 � − 1 colors is still NP-hard (Khanna et al. 2000), where χ is the
chromatic number. It also has various applications, such as timetabling (Erben 2000),
register allocation (Smith et al. 2004), and some others (Barnier and Brisset 2004;
Gebremedhin et al. 2005).

The landscape paradigm has been used for search in general (Reidys and Stadler
2002). Formally, global structural information of the optimization task is represented
as a landscape (Reidys and Stadler 2002) containing two essential ingredients, i.e., the
representation space SR and the cost function f (�s). Each state �s ∈ SR is associated
with a potential solution of the task. The function f (�s), which is to be minimized,
is used for measuring the quality of each �s. The rationale of problem solving is then
to find the state(s) with better quality by moving in the landscape with the search
strategies utilizing structural information.

The GCP landscape can be studied from a point of view on its geometric properties
(Reidys and Stadler 2002) under specified neighborhood structure(s), focusing on the
ruggedness, i.e., the distribution of local minima, and the neutrality, i.e., the existence
of plateaus, where each plateau is a cluster of the neighboring states in the same
quality. The strategies based on local structural information may be strongly fooled
by local minima (Cheeseman et al. 1991). For GCP, the existence of giant plateaus
has been shown (Mezard et al. 2005). The neutrality becomes significant when some
benches tend to be very large (Frank et al. 1997), as studied in Satisfiability Problem
(Selman and Kautz 1993), where each bench is a plateau but not a local minimum.

Local search (LS) (Galinier and Hertz 2006; Selman and Kautz 1993; Trick and
Yildiz 2007), which improves each incumbent state by neighborhood moves, has been
applied to solve various problems successfully. A search strategy is defined as stable
if it only allows the moves from one state to another with �f ≤ 0. Both the greedy
(�f < 0) and plateau moves (�f ≡ 0) are stable. Each stable LS strategy is stuck
into the local minimum that it first encounters. Vertex Descent strategy (Glass and
Prugel-Bennett 2003) is a simple example of a stable LS strategy.

Noise strategies (Selman et al. 1994), which are not stable, allow the LS to make
occasional uphill moves (�f > 0) to explore a rugged landscape. Typical examples
include Random Walk (Chiarandini 2005; Liu et al. 2002), Tabu Search (Hertz and
de Werra 1987), Simulated Annealing (Johnson et al. 1991), etc. Noises may turn an
incomplete LS strategy into probabilistically approximately complete (PAC) (Hoos
1999) which achieves an optimum state with a probability one as the run-time ap-
proaches infinity. However, for searching efficiently under a reasonable cutoff time, a
strategy is preferable to exploit problem structural information rather than to perturb
blindly.

Recombination search (XS), which generates a state by combining the positive
clues from two source states, utilizes the difference between two source states and
leads to an adaptive leaping (Merz and Freisleben 2000). The Graph-Adapted Re-
combination (Fleurent and Ferland 1996) was proposed by hybridizing averaging
(Selman and Kautz 1993) with min-conflicts. For purpose of addressing permutation
symmetry (Glass and Prugel-Bennett 2003; Zhang 2004), grouping-based XS meth-
ods (Falkenauer 1996), such as Greedy Partition Crossover (Galinier and Hao 1999),
Union of Independent Sets (Dorne and Hao 1998), etc. (Erben 2000), were proposed.
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Fusion search (FS), a concept borrowed from Multi-Step Crossover Fusion
(Reeves and Yamada 1998), is defined as a chained combination between an XS and
an LS. Although FS has the same interface as XS, the two components in FS have dif-
ferent search roles, where the XS finds a promising state as an incumbent state of the
LS, while the LS locally improves this state. The idea of FS has been used in practice
(Fleurent and Ferland 1996; Galinier and Hao 1999; Glass and Prugel-Bennett 2003;
Selman and Kautz 1993).

Various metaheuristic frameworks have been applied in solving GCP, which use
LS, XS, or even FS as their search components. The examples include Ant Sys-
tems (Bui et al. 2008), Adaptive Memory (Galinier et al. 2008), Scatter Search
(Hamiez and Hao 2001), Immune Algorithms (Cutello et al. 2007), Genetic Al-
gorithms (Barbosa et al. 2004; Dorne and Hao 1998; Fleurent and Ferland 1996;
Glass and Prugel-Bennett 2003; Mumford 2006), etc. In a framework, it is important
to manage the source information efficiently for its search components by facilitating
the emergence of the positive clues as well as maintaining the diversity of informa-
tion.

Autonomy oriented computing (Liu et al. 2005) stresses modeling the flexible au-
tonomy of entities and the self-organization of them for a specific goal. It is possible
to preserve the diversity of the positive clues in the system (Curran and O’Riordan
2006) with a local diffusion effect (Xie and Liu 2006), especially when each entity
possesses its private memory (Xie and Zhang 2004). Moreover, allowing agents to
use memorized information to adjust their behaviors enable us to study more intel-
ligent agents (Lerman and Galstyan 2003). Specifically, the compact multiagent op-
timization framework (Xie and Liu 2005), which supports the cooperative search by
multiple compact agents, has been applied in solving hard computational problems,
such as Numerical Optimization Problem (Xie and Liu 2005) and Traveling Sales-
man Problem (Xie and Liu 2006). As a simple multiagent system (Stone and Veloso
2000), it may have the potentials of parallelism, robustness, and scalability.

In this paper, a multiagent fusion search (MAFS) for GCP is presented. In Sect. 2,
a multiagent optimization framework in general is described to support the coop-
erative search by the multiple agents under the law of socially biased individual
learning (SBIL) (Galef 1995; Xie and Zhang 2004). In Sect. 3, MAFS is realized
in a simplified way of the framework, where MAFS not only supports the fusion
search for each agent based on extremely limited declarative knowledge, but also
works in a decentralized way. In Sect. 4, the knowledge components of MAFS are
implemented to address neutrality and ruggedness of the GCP landscape by utilizing
available structural information. In Sect. 5, the characteristics of MAFS are stud-
ied by performing experiments on some hard graphs (Fleurent and Ferland 1996;
Johnson and Trick 1996). Finally, this paper is concluded in Sect. 6.

2 Multiagent optimization framework

In order to achieve the goal of finding solution(s) with at least reasonable quality, the
multiagent optimization framework is organized with autonomous entities (Liu and
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Tsui 2006; Xie and Zhang 2004) that self-organize by manipulating certain knowl-
edge components which are realized according the internal representation (IR) of
task and related world knowledge (Newell and Simon 1972).

The framework consists of NP active entities, called compact agents, and a dae-
mon entity, called environment (ENV) (Weyns and Holvoet 2005). For simplicity, the
agents are homogenous in the sense that they have the same organization structure.
Each agent has an ability to generate new states in SR by manipulating available
knowledge based on simple rules (Xie and Zhang 2004). Moreover, agents achieve a
collective performance through interacting with each other according to the interac-
tion protocol (IP) under the support of ENV.

2.1 Basic concepts

The internal representation (IR) encapsulates the primary knowledge related to the
optimization task, which contains global structural information, i.e., the landscape
(Reidys and Stadler 2002), and related local structural information. Using the land-
scape is quite general in solving hard computational problems (Reidys and Stadler
2002). Local structural information may reduce the local computation efforts and
may lead the search into the promising directions.

The general problem solving capability emerges from an interaction of declara-
tive and procedural knowledge (Anderson 2005; Newell and Simon 1972). Declar-
ative knowledge is represented in symbol structures called chunks, and procedural
knowledge is represented in elementary information processes called rules. All re-
quired knowledge elements are instantiated according to the IR and related world
knowledge, where only the knowledge elements using local structural information
are regarded to be strongly problem-dependent.

Each chunk is a certain declarative data structure containing a meshed set of pat-
terns (Edgington et al. 2004; Glenberg 1997), and the content of a chunk is designated
by its name. Each rule is represented as R

I_NAME
I_KEY (Xie and Liu 2006). The subscript

I_KEY designates a high-level interface used for handling with specific input/output
parameters, where each parameter is either a knowledge element or a simple data
type, and the superscript I_NAME designates the low-level realization. Each knowl-
edge element may have specific setting parameters, where the value of each parameter
can be tuned before a run.

2.2 Compact agent

A compact agent is a socially situated autonomous entity (Liu and Tsui 2006; Xie and
Zhang 2004) capable of making decisions for itself which is subject to limitations of
available knowledge.

Each agent has two declarative knowledge sources. Firstly, it possesses a long-
term memory called MA for supporting individual learning. Moreover, at least one
of the chunks in MA is publicly accessed by the external world (Liu and Tsui 2006).
Secondly, it refers to an equivalent social memory (MSE), which is owned by ENV
and contains the chunks for achieving socially biased learning (Fragaszy and Visal-
berghi 2004; Galef 1995). Moreover, the agent possesses a private buffer memory
called MG for temporarily holding the newly generated chunks.
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Each memory is defined by the chunks it possesses, where each chunk aggregates
certain particularities of the landscape. Moreover, each chunk in memory is updated
(Glenberg 1997) by its owner only. Typical examples of a chunk in a memory include
a state in SR , a state set (Galinier and Hao 1999; Xie and Liu 2006), or a special data
structure, such as an ensemble of independent sets (Galinier et al. 2008), a pheromone
matrix (Bonabeau et al. 1999), a state in priority space (Joslin and Clements 1999),
etc.

The search capability in the landscape is achieved by the generate-and-test rule
(RGT) (Dietterich 1986; Xie and Zhang 2004), which contains a generating part
(RG), a testing part (RT ), and a solution-extracting part (RS) (Xie and Liu 2006).
The law of behavior is socially biased individual learning (SBIL) (Fragaszy and
Visalberghi 2004; Galef 1995; Xie and Zhang 2004), as a fast-and-frugal heuristic
in bounded rationality (Gigerenzer and Goldstein 1996), which is adopted by many
species for adapting in the real world with limited time and resource and is a mix of
reinforced practice of individual experience and social influence. First, according to
the current chunks in MA and MSE , the RG generates new chunks and stores them into
MG immediately. Afterwards, based on the chunks in MG, the RT updates MA, and
the RS extracts inclusive valid states and exports them to ENV, respectively. The RS

has no influence on the solving process and is thus realized in the simplest way. If
without loss of generality, the RT only produces reflex behaviors that may determine
certain nontrivial properties of the chunk(s) in MA (Xie and Liu 2005).

2.3 Environment

The environment (ENV) (Liu et al. 2005) is a daemon entity providing background
supports for the cooperation among the agents by encapsulating available resources,
even may include the physical infrastructure (Weyns and Holvoet 2005), if necessar-
ily. Here ENV plays two roles.

First, it holds a solution-depositing module, which is simply realized by storing
the best-quality state of all the states that are exported by the RS of all agents.

Secondly, it manages resources and services (Weyns and Holvoet 2005) for all the
agents. Such as, (a) it constructs the initial contents of chunks in MA of all the agents
with the memory-constructing rule (RINI); and (b) it organizes the corresponding MSE
for all agents based on the available declarative knowledge through the interaction
protocol (IP).

2.4 Working process

The framework is initialized at t = 0. All the NP agents are constructed, and the RINI
rule is executed to construct the chunks in MA for all agents. Then states are extracted
from such chunks by RS and are submitted to the solution-depositing module in ENV.
Then all the knowledge components, including the IP in ENV, are instantiated.

The framework runs in iterative learning cycles. By running in a Markov chain, the
system behavior in the t th (t ∈ [1, TMAX]Z) cycle only depends on the system status
in the (t − 1)th cycle, where TMAX is the maximal number of cycles. The learning
process is terminated as if the proper solution is found, or if the condition t ≡ TMAX
is satisfied.
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Moreover, each cycle contains two sequential clock steps: the C_RUN step and the
C_POST step. The RG rule is executed at the C_RUN step, and the RT and RS rules
are executed at the C_POST step. The using of the two synchronizing steps simply
ensures the environment being unchanged during a generating process for all agents.

At each cycle (t > 0), all the agents are activated in turn. The socially biased
learning process by the ith activated agent in the t th cycle can be represented as:

M
(t)
A(i),M

(t)
SE(i)

RG−−−−−→
(C_RUN)

M
(t)
G(i)

⎧
⎪⎪⎨

⎪⎪⎩

RT−−−−−→
(C_POST)

M
(t+1)
A(i)

RS−−−−−→
(C_POST)

{�s} → ENV
(1)

where each M
(t)
SE(i)is organized by the IP in ENV. Moreover, the chunks in M

(t)
G(i) will

be cleared at the end of such a learning process.
At the end of each cycle, if necessarily, the information related to ENV is updated.

2.5 Summary

In summary, the framework is represented as a tuple, i.e., 〈IR, TMAX , NP , MA, MG,
MSE , RG, RT , RS , RINI , IP〉, where both TMAX and NP are simple parameters.

Given a known IR, the three types of memories, including MA,MG, and MSE ,
can be specified in advance according to the names of chunks that each memory
possesses, although the contents of chunks have to be varied during the runtime.

The other knowledge components can be specified rather independently through
using different memories. For each agent, RINI simply uses MA;RS only depends
on MG;RT works on both MA and MG; and RG employs all the three available
memories.

For ENV, IP accesses the chunks in MA shared by all agents, and then organizes
MSE for every agent. Hence, IP may be realized in a quite sophisticated way, if nec-
essarily. However, simple implementations are often considered, if possible.

The number of setting parameters in such a framework is not necessarily large
since many of the knowledge components may have none or few parameters. In ad-
dition, in order to focus our studies on certain interesting components, we may fix
many components in the simple forms. Those components with no variety, e.g., the
solution-depositing module in ENV, are out of our further concentration.

3 Multiagent fusion search (MAFS)

The MAFS is an optimization system realized by using simple forms of knowledge
components in the multiagent framework. It has three main features.

Firstly, memories are specified with extremely limited declarative chunks. MA and
MG both contain one state in SR , which are called �s(t)

A and �s(t)
G , respectively, where

�s(t)
A is publicly accessed by ENV since it is the only one chunk in MA. MSE holds an

equivalent state set called X
(t)
SE , which refers to a set of states.
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Secondly, a decentralized IP is considered for supporting the interactions be-
tween the agents. This is important, as in the real world, animals may observe
neighbors for achieving socially biased learning (Fragaszy and Visalberghi 2004;
Galef 1995), which leads to a cumulative evolution of knowledge that no single indi-
vidual could invent on its own (Bandura 1977). This IP employs a directed network
topology model (IPNET). Each agent is associated with one node in the network, and
the node stores a reference of the publicly opened knowledge in MA of the agent.
A directed connection from the node A to B indicates that the agent B can use the
referenced knowledge of the node A. For each agent, X

(t)
SE contains all the referenced

chunks of the nodes connected to the node associated with it, which is a subset of
X

(t)
S = {�s(t)

A(i)|i ∈ [1,NP ]Z} and may be different for different agents.
Thirdly, in order to formalize some well-studied LS and XS strategies and to study

certain novel strategies, RG is realized in a tuple 〈RSP, RFS〉, where RFS = RXS +RLS

is the fusion search (FS), and the state-picking rule (RSP) serves as a simple knowl-
edge lens (Edgington et al. 2004) to choose one state from X

(t)
SE as the input infor-

mation of RFS. The chaining operator (‘+’) indicates that the recombination search
rule (RXS) and the local search rule (RLS) are chained, i.e., the output of the former
rule RXS is exactly the input of the latter rule RLS. The fusion is a concept borrowed
from Multi-Step Crossover Fusion (Reeves and Yamada 1998), which is actually an
XS strategy designed with an extension of a LS strategy. Moreover, RFS may be un-
derstood as a special RXS in consideration of the same input/output parameters of
them, which possesses two components in different search roles: the RLS rule play-
ing a primary exploitation role and the RXS rule working in a navigation role to find
a promising state as the incumbent state for the RLS.

To provide a straightforward understanding, Fig. 1 shows the pseudo code of
MAFS from the viewpoint of a population-based optimization algorithm, where
all the knowledge publicly accessed by the IPNET in ENV, i.e., X

(t)
S = {�s(t)

A(i)|i ∈
[1,NP ]Z}, corresponds to a virtual population of states, although �s(t)

A(i) is actually

located in MA of the ith agent. For each agent, X
(t)
S is at least transparent to it, since

it simply refers toX
(t)
SE , which is organized by the IPNET model. Moreover, because

each agent shares all its declarative knowledge in MA with the external world, X
(0)
S

can represent the knowledge to be constructed by RINI into the memory MA of all
agents.

At the C_RUN step, the RG rule of each agent works in the following steps: (a) two
states �s(t)

base and �s(t)
ref , are chosen from the input information, where �s(t)

base = �s(t)
A and �s(t)

ref

is a state picked by the RSP from X
(t)
SE; (b) the RXS part of RFS generates one child

state called �s(t)
inc by using both �s(t)

base and �s(t)
ref as the parent states; and (c) the RLS part

of RFS further improves �s(t)
inc and finally stores it as �s(t)

G in MG.

At the C_RUN step, the RT rule of each agent replaces �s(t)
A by �s(t)

G according to a

specific criterion. The RS rule is not mentioned in Fig. 1 since it simply exports �s(t)
G

to the solution-depositing module in ENV.
In MAFS, the two parent states of RFS serve different roles, especially in consid-

eration of the multiple cycles in a run. Under the law of SBIL, the parent �s(t)
base always
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Fig. 1 Pseudo code of MAFS from the viewpoint of a population-based algorithm

uses the �s(t)
A in MA of each agent as its input and the state generated by RFS is always

the candidate of �s(t+1)
A , while the parent �s(t)

ref uses a state from X
(t)
SE as its input in a

stochastic way. Hence, RFS may be interpreted from a viewpoint of a guided local
search process, where �s(t)

A serves as an incumbent state to be improved and the state

which is picked from X
(t)
SE serves as the guiding information.

In the multiagent framework, since each agent possesses its own long-term declar-
ative memory, it is possible to preserve the diversity of positive clues in the system.
By utilizing their individual experiences, the agents are able to explore in parallel,
which may significantly increase the probability of escaping from local minima in
the rugged GCP landscape. With RXS, the agents are facilitated by the social influ-
ence of IPNET, thus achieve a collective performance searching faster than they work
independently. In addition, usage of RLS in the FS is important in obtaining good
states, especially when some benches in the GCP landscape are huge.

In summary, MAFS can be represented as a tuple, i.e., 〈IR, TMAX,NP , RSP, RXS +
RLS, RT , RINI, IPNET〉. All its components can be realized in a rather decoupled way
since the memory specification is known. Moreover, many of its components may be
not strongly problem-dependent if they do not use any local structural information.
For example, the IPNET model may not utilize any structural information, or both RSP

and RT are suggested to only use (or even not use) the global structural information
of IR.
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4 The implementation for GCP

The implementation of the knowledge components in MAFS is especially focused
on RXS and RLS, because they play the major roles in tacking with neutrality and
ruggedness of the GCP landscape in the multiple cycles of a run, although RINI , which
constructs the totally NP states at t = 0, may also utilize local structural information
to facilitate the search process through providing a good starting status, if necessarily.

Formalized forms are used to realize the rules of RLS and RXS, which is important
not only in stressing the difference between various realizations, but also in leaving
certain flexibility to develop novel variants locally.

4.1 Internal representation (IR)

The primary input information of the graph coloring problem (GCP) contains both
the graph, i.e., G = (V ,E), and the number of available colors, i.e., K .

Normally, a preliminary data structure, i.e., the string-based assignment (ŝ) (Falke-
nauer 1996), is considered. Each ŝ has |V | elements, where each element corresponds
to a vertex and can be assigned a color value. An assigned vertex is called critical
(Galinier and Hertz 2006) if its violation number (vio), i.e., the number of vertices
within the same color class that are adjacent to the vertex, is larger than 0. The num-
ber of assigned vertices is called VA. A configuration is then defined as a complete
assignment with VA ≡ |V |.

For the GCP landscape, each configuration is a state �s ∈ SR , where SR is an integer
representation space with s(j) ∈ [1,K]Z for ∀j ∈ [1, |V |]Z, s(j) is the color of the j th

vertex of �s. The cost function is f (�s) = ∑|V |
j=1 vio(�s, j)/2, where vio(�s, j) ≥ 0 is the

violation number of the j th vertex. Then an optimal solution is a state �s∗ that satisfies
f (�s∗) ≡ 0, which means all its vertices are not assigned in the critical status.

The local structural information relies on the adjacency matrix. Any of edge in E

which has two adjacent vertices ja and jb are described with the TRUE values at the
two corresponding entries (ja, jb) and (jb, ja) in the Boolean |V | × |V | matrix.

An assignment ŝ can be simply constructed with some heuristics which utilize the
local structural information from the adjacency matrix involving the distribution of
node degrees (Walsh 2001), most-constrained vertices (Kirovski 1998), etc. Exam-
ples of these heuristics include DSatur (Brélaz 1979), XRLF (Johnson et al. 1991),
lmXRLF (Kirovski 1998), etc.

Moreover, each assignment ŝ with VA < |V | can be constructed into a state �s ∈ SR

by a vertices-assigning rule (RVA). Each unassigned vertex is assigned a randomly
chosen color (Galinier and Hao 1999) by the randomizing RVA rule (RR

VA) and a color
with the minimal violation number by the min-conflicts RVA rule (RMC

VA ) (Fleurent
and Ferland 1996; Hamiez and Hao 2001).

4.2 Local search

A local search strategy (LS) tries to achieve improvement on an incumbent state
with certain neighborhood moves. For GCP, as one of the representative models of
Constraint Satisfaction Problems (Liu et al. 2002), LS strategies based on 1-moves
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(Galinier and Hertz 2006) are often considered, since 1-moves can be significantly
speeded up by associating each state �s with a violation table (Liu et al. 2002). Here
a 1-move changes the color of a single vertex in the incumbent state. In addition,
1-moves possess the connectivity property (Nowicki 1996), i.e., there exists a finite
sequence of such moves to achieve the optimum solution from any valid state. Many
sophisticated moves, such as Kempe chain (Johnson et al. 1991), Shuffle (Funabiki
and Higashino 2000), etc., can be represented by a finite sequence of 1-moves.

For GCP, the violation table is simplified as a |V | × K violation matrix γV , in
which each entry γV (j, k) ≥ 0 (j ∈ [1, |V |]Z, k ∈ [1,K]Z) is the number of vertices
within the kth color class of �s adjacent to the j th vertex. The initialization of such a
matrix takes the time complexity O(|V | · K). Each delta value �f = γV (j, s(j)) −
γV (j, kx) can be obtained in constant time before the color of the j th vertex changes
from s(j) to kx . If a 1-move is actually performed, both columns s(j) and kx of the
matrix are updated, where the updating takes O(|V |). The matrix γV is not the same
as the matrix � (Fleurent and Ferland 1996), in which entry �(j, k) represents the
effect of changing the color of node j to the color k, where the initialization takes
O(|V |2 · K)for and each 1-move takes O(|V | · K).

For the purpose of representing various RLS strategies in formalized forms, three
hierarchical levels are used, i.e., (a) the local level (RLSL), (b) the round level (RLSR),
and (c) the meta level, if necessarily. A basic RLS strategy can be achieved by a
tuple 〈RLSL, RLSR〉. A meta RLS strategy can then be achieved by chaining certain
RLS strategies being on the same incumbent state. For a basic RLS, it is stable if its
RLSL only allows stable moves. For a meta RLS, it is stable if all its component RLS
strategies are stable.

For convenience, the best state found so far by the RLS rule is called �s∗, which is
recorded only when a LS strategy is not stable.

The local level The RLSL decides a destination color for 1-move at each vertex.
Here a color list (�) contains certain colors. For the j th vertex, the color is randomly
selected from a candidate color list corresponding to the input �(j) with the current
color s(j) excluded. The vertex is defined as fixed if the candidate color list is empty.

With the violation matrix γV , one simple way is to define an input color list is by
utilizing γV (j, k) values. For example, the least-violation �(j), i.e., �LV(j), contains
all colors with the minimum violation value of the j th vertex.

The 1-moves can be further guided by using a |V | × K tabu matrix (Hertz and
de Werra 1987). If a 1-move leading to a state no better than �s∗ is performed, then its
original color is declared as tabu for a certain number of such 1-moves (called tabu
tenure). The tabu tenure is calculated as UZ(A) + α · VC (Galinier and Hao 1999),
where UZ(A) returns an integer value selected in [0, A − 1]Z at random and VC

is the number of the critical vertices in the current �s. The default values of A and
α are 10 and 0.6, respectively (Galinier and Hao 1999). Here the second part, i.e.,
α · VC , provides a self-adaptive scheduled neighborhood selection; and the first part,
i.e., UZ(A), introduces certain fluctuation into such scheduled process.

For the input �(j), the random walk RLSL (RRW
LSL) uses the list of all possible colors;

the least RLSL (RL
LSL) uses the list �LV(j); and the Quasi-Tabu RLSL (R

QT
LSL) uses the

list �LV(j) ∩�NT(j), where the non-Tabu �(j) (�NT(j)) is defined as all the colors that

are not in tabu status of the j th vertex. Both RL
LSL and R

QT
LSL only allow stable moves.
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The round level The RLSR executes RLSL on selected vertices in a specified order
during a round. The minimal-critical RLSR (RMC

LSR) selects a 1-move with the maxi-
mum deduction of f (�s) by examining all critical vertices (Galinier and Hao 1999).
The systematic RLSR (RSYS

LSR) (Glass and Prugel-Bennett 2003) takes each unfixed ver-
tex in turn, and performs each 1-move based on a specified RLSL rule. The proba-
bilitistic RLSR (RP

LSR) takes each vertex in turn, and then performs the 1-move on the
vertex selected with a probability of VRW/|V | (VRW ∈ (0, |V |]R).

The meta level This level manages one or more RLS strategies into a meta LS
strategy. One simple way is to combine different RLS strategies by using the chain-
ing operator. In addition, the local cutoff criterion (RCCL) is often considered,
where one RLS rule is executed in multiple rounds. Generally, the execution of
RCCL is always terminated if all vertices are fixed during a round. Specifically,
the deterministic RCCL (RD

CCL) also terminates the search in exactly LC rounds
(Galinier and Hao 1999); while the improvement-based RCCL (RI

CCL) also termi-
nates if no further improvement on the �s∗ occurs for LI rounds (Chiarandini 2005;
Glass and Prugel-Bennett 2003). In the case that large plateaus exist in the GCP land-
scape, it is difficult in assuring if a local minimum is actually reached even as LC > 1
or LI > 1.

The instances The random walk strategy (RRW
LS ) can be represented by a tuple

〈RRW
LSL, RP

LSR〉. The Vertex Descent strategy (VDS) (Glass and Prugel-Bennett 2003)

can be represented as 〈〈RL
LSL,RSYS

LSR〉,RI
CCL〉. The Quasi-Tabu strategy (R

QT
LS ) is de-

fined as 〈〈RQT
LSL, RSYS

LSR〉,RI
CCL〉.

As an intermediate version between VDS (Glass and Prugel-Bennett 2003) and
Tabucol (Hertz and de Werra 1987), R

QT
LS is not completely new since it inherits the

traits from both of them. However, as an essential difference from Tabucol, R
QT
LS is

a stable strategy, which may be terminated early if all its vertices are fixed during a
round due to the restriction of the tabu matrix. The tabu matrix is updated only while
1-move is searching in a plateau. As same as VDS, it cannot escape from the local
minimum it first encounters. But it may be more efficient in finding the exits from
benches by utilizing the tabu matrix.

4.3 Recombination search

The grouping-based RXS (RXS:G) is a RXS rule based on the grouping method (Dorne
and Hao 1998; Falkenauer 1996; Galinier and Hao 1999; Hamiez and Hao 2001).
Here a group set (H ) is defined as a set of K groups, where each group contains a set
of vertices. By using groups, the permutation symmetry (Glass and Prugel-Bennett
2003; Zhang 2004), which has massive redundancy (≡ K!) for labeling the colors,
can be broken naturally.

The numbers of the total and the distinct vertices in an H are called VHT and VHD,
respectively. Then an H with VHT ≡ VHD is defined as a simplex H , where each of
its vertices only exists in one group. Each assignment, and hence each configuration
state, has an equivalent simplex H by simply taking each color class as a group.
A stable H is defined as an H that each of its groups is an independent set (IS).
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For the rugged GCP landscape, it has been suggested that good states may con-
tain a fairly robust ‘core’ (Glass and Prugel-Bennett 2003). The exact core, or
called backbone (Zhang 2004), may not exist in a meaningful size due to the ex-
istence of giant plateaus which contain the majority of solutions (Mezard et al.
2005). The “big valley” hypothesis (Boese et al. 1994; Reeves and Yamada 1998;
Zhang 2004), which has been validated in many hard computational problems, sug-
gests that better local minima tend to have smaller distance from the closest optimum
by sharing common partial structures. For GCP, such partial structures may be asso-
ciated with groups in a certain way.

The concept of complex core (c-core) is introduced here: each H has one exactly c-
core, i.e., a stable group set defined as a subset of the H where all its critical vertices
are excluded. For each H , its c-core size (VCC) is the VHD of its c-core and is not
larger than the VHD of the H . The c-core of each stable H is exactly the stable H

itself.
In order to navigate in the rugged landscape, the basic principle of realizing a

RXS:G rule is to combine the positive partial structures associated with the parent
states as well as to allow the adaptive leaps into new local valleys. Formally, there is
RXS:G = 〈RGPP,RGGP, RGVR, RVA〉, which contains four parts working in sequential
steps. First, two source states �s(t)

base and �s(t)
ref are translated into two equivalent group

sets Hbase and Href , respectively. The three early parts, i.e., preprocessing (RGPP),
group-picking (RGGP), and vertices-removing (RGVR), which generates a simplex H

called Hinc by operating on the two parent group sets, i.e., Hbase and Href . After-
wards, the Hinc is translated back into an equivalent assignment. In the last step, the
assignment is constructed into a state �s(t)

inc, by a vertices-assigning (RVA) rule (see
Sect. 4.1).

Preprocessing The RGPP preprocesses each input H of Hbase and Href into a group
set containing suitable positive clues. The equivalent RGPP (RE

GPP) returns the orig-
inal input H (Falkenauer 1996; Galinier and Hao 1999). The IS RGPP (RLS

GPP) re-
duces each group in the H into an independent set (IS) by removing each critical
vertex with a maximum number of neighbors in the group (Dorne and Hao 1998;
Hamiez and Hao 2001). The MIS RGPP (RMIS

GPP) further expands each IS into a maxi-
mum IS (Eppstein 2003) by inserting each of the vertices with a minimal number of
neighbors in the IS (Galinier et al. 2008).

Either RIS
GPP or RMIS

GPP transforms each input H into a stable one. Moreover, the
H outputted by RIS

GPP is a subset of the input H and a subset of the H outputted by
RMIS

GPP.
The VCC size of the group set outputted by RIS

GPP is not smaller than that by RE
GPP

since certain vertices in the input H may no longer be critical as other critical vertices
are removed, and the VCC size by RMIS

GPP is obviously not smaller than that by RIS
GPP.

Group-picking The RGGP generates the group set HM by picking out K groups
from the both parent group sets, i.e., Hbase and Href . The alternate-greedy RGGP
(RAG

GGP) for picking out each HM(k) is achieved by two steps. The first step is to select
one parent as the target, called HT . Here it is achieved by selecting one of them
alternately (Galinier and Hao 1999). The second step is to pick out a group in HT as
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the HM(k). Here the element HT (x) with maximal size of |(HM(1) ∪ · · · ∪ HM(k−1)) ∪
HT (x)| is picked out as the HM(k) (Galinier and Hao 1999).

RAG
GGP aims at achieving a HM with two features: (a) the HM has an enough dis-

tance from the both parent group sets Hbase and Href , thus it allows adaptive leaps
into new local valleys, which has been used by algorithms (Merz and Freisleben
2000) in exploring the “big valley” (Boese et al. 1994; Reeves and Yamada 1998;
Zhang 2004) in a rugged landscape; and (b) the HM has a large VHD size. If both
parents are stable group sets, HM is also a stable H , thus the VCC size of HM is also
large.

Vertices-removing The RGVR achieves a simplex H , called Hinc, by removing all
redundant vertices in the HM , where Hinc is a subset of HM and has a same VHD size
as HM . For each vertex existing in multiple groups, the first-keeping RGVR (RKF

GVR)

only keeps the vertex in the HM(k) with the smallest k value (Galinier and Hao 1999);
while the random-keeping RGVR (RKP

GVR) keeps the vertex in a group selected at ran-
dom.

It is rational that Hinc has a large VCC size, thus Hinc will benefit given HM has a
large VCC size. If HM is a stable H , then every potential Hinc has the same VCC size.

The instances The grouping-based method itself and its parts have been studied in
recent years, especially the greedy partition crossover (GPX) (Galinier and Hao 1999)
and its variants. For example, GPX can be represented as 〈RE

GPP, RAG
GGP,RKF

GVR, RR
VA〉.

Moreover, RMIS
GPP has been applied to the independent sets in the adaptive memory

(Galinier et al. 2008), and both RIS
GPP and RMC

VA have been considered in another
generalized version (Hamiez and Hao 2001).

The standard version of grouping-based recombination (RSTD
XS:G) is defined as

〈RMIS
GPP,RAG

GGP, RKR
GVR,RMC

VA 〉, which differs from the previous methods in at least two
parts and the part RKR

GVR is a novel one. Together with RMIS
GPP,RAG

GGP and RKR
GVR work

on stable group sets to generate a simplex group set with a large c-core size in an
unbiased way.

4.4 Standard MAFS version

Formally, the standard version of MAFS, called #STD, can be represented as a tuple,
i.e., 〈IR, TMAX,NP , RR

SP,RSTD
XS:G + R

QT
LS , RD

T ,RDS
INI,G(NP ,NL)〉. Other MAFS versions

are then defined by applying the corresponding modification(s) to #STD.
G(NP ,NL) is defined to describe a static IPNET model: each node has NL nodes

connecting to it, where the NL nodes are randomly selected at t = 0 and all the
connections are directed and static in a run. In the case that NL ≡ NP , because the
topology is fully-connected, G(NP ,NL) is equivalent to the centralized memory (Xie
and Liu 2006).

The randomized RSP rule (RR
SP) picks out a state from X

(t)
SE at random. The directly

RT rule (RD
T ) replaces �s(t)

A by �s(t)
G directly, thus the �s(t)

A in MA of an agent is the most
recently state generated by the agent itself.

The RDS
INI rule constructs the total NP states by three steps: (a) to construct an

template assignment (Galinier and Hao 1999), called ŝT , corresponding to the first K
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color classes found by Dsatur (Brélaz 1979); (b) to generate each �s with RR
VR base

on the ŝT (Galinier and Hao 1999); and (c) to improve each generated �s immediately
with R

QT
LS .

By default, the parameters are NP = 25 and LI = 50 for the RI
CCL of R

QT
LS , re-

spectively. TMAX is fixed as 500. In addition, there is NL ≡ NP for the G(NP ,NL) by
default.

5 Experimental results and discussions

The characteristics of MAFS are investigated by the experiments on the hard graphs.
There are two main indices for measuring the performance of an algorithm. The

first is the solution quality, which is the probability to find one solution for given K ,
called ps (ps ∈ [0,1]R). The larger is the ps , the better the performance. The ps can
be estimated with NS/NR , where NS is the number of satisfied trials that achieve
proper coloring, and NR is the number of trials. All average results are evaluated
with the satisfied trials. The second index is the computational cost. In the compari-
son of the algorithms across different platforms and reducing unnecessarily impacts
caused by the low-level details, it is often preferable to use representative operation
counts, or called run-length, is preferred to be used for reducing unnecessarily im-
pacts caused by the low-level details rather than the CPU time, as the first is a more
platform-independent measure of the computational cost of an algorithm (Hoos and
Stützle 1998). RLS and RXS both execute major computations in multiple cycles. In
this paper, Tm (×106) is the count of 1-moves and NX = TR · NP is the count of RXS

operations, where TR is the cycles taken to reach the last improvement. The smaller
are the Tm and NX , the better the performance. In solving GCP, the run-length is char-
acterized by Tm because 1-moves consume much more computational time than RXS

operations, where Tm is huge. Therefore, the performance indices can be simplified
as a tuple, 〈ps,Tm〉.

5.1 Basic performance

The random graphs with a density d = 0.5 is a traditional class of benchmark in-
stances. Table 1 lists the mean results of 10 trials by #STD for both the 100-node
(gcol01–gcol20) and the 300-node (gcol21–gcol30) instances, which are available
from the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/colourinfo.html).
For each instance, ps,Tm and TR are reported for the color K . The value K̄ denotes
the smallest number of colors needed for which each instance can be colored without
a failure. The results show that all the 100-node instances can be solved with short
TR values.

Table 2 summarizes the average results reported by Tabucol (Hertz and de Werra
1987), by the genetic algorithm hybridized with a local search (GLS) (Fleurent
and Ferland 1996), as well as those obtained by #STD, where χ̃ is a probabilistic es-
timation of the chromatic number of a group of graphs (Fleurent and Ferland 1996).
The value KM denotes the smallest number of colors for which all graphs of the same
|V | can be colored with ps = 100%. Both the algorithm from Fleurent and Ferland

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/colourinfo.html


J Comb Optim (2009) 18: 99–123 113

Table 1 Mean results on random graph instances with d = 0.5 by #STD of MAFS

Graph K ps Tm TR Graph K ps Tm TR Graph K̄ K ps Tm TR

gcol01 15 1.00 0.011 0.6 gcol11 15 1.00 0.009 0.1 gcol21 33 32 0.70 3.867 186.6

gcol02 15 1.00 0.011 0.8 gcol12 15 1.00 0.017 2.1 gcol22 33 33 1.00 2.018 72.0

gcol03 15 1.00 0.020 2.7 gcol13 15 1.00 0.011 0.1 gcol23 33 32 0.70 2.611 104.7

gcol04 15 1.00 0.017 1.4 gcol14 15 1.00 0.038 7.8 gcol24 33 32 0.20 3.896 160.5

gcol05 15 1.00 0.011 0.0 gcol15 15 1.00 0.022 3.6 gcol25 32 32 1.00 3.858 143.7

gcol06 15 1.00 0.017 2.2 gcol16 15 1.00 0.012 0.4 gcol26 33 32 0.10 1.275 84.0

gcol07 15 1.00 0.014 0.5 gcol17 15 1.00 0.026 5.2 gcol27 32 32 1.00 3.087 126.5

gcol08 15 1.00 0.012 0.2 gcol18 15 1.00 0.012 0.5 gcol28 33 32 0.10 4.613 225.0

gcol09 15 1.00 0.009 0.1 gcol19 15 1.00 0.031 5.3 gcol29 33 32 0.10 2.873 130.0

gcol10 15 1.00 0.018 2.4 gcol20 14 1.00 0.028 6.6 gcol30 33 33 1.00 2.030 69.7

Table 2 Average results on random graphs with d = 0.5 by Tabucol (Hertz and de Werra 1987), GLS
(Fleurent and Ferland 1996) and #STD

|V | Number of graphs χ̃ KM from
Hertz and
de Werra
(1987)

KM from
Fleurent
and Ferland
(1996)

K̄ from
Fleurent
and Ferland
(1996)

KM K̄ K

100 20 16 16 15 14.95 15 14.95 14.95

300 10 35 35 34 33.5 33 32.8 32.2

(1996) and #STD find smaller KM than Tabucol for the 100-node graphs. Moreover,
for the 300-node graphs, #STD achieves better results than the both previous algo-
rithms (Fleurent and Ferland 1996; Hertz and de Werra 1987) for both KM and K̄ ,
while the average K is even smaller than the average K̄ .

For further demonstration of the performance of MAFS, totally 20 representative
challenging instances are selected from a mixed set of both DIMACS (Johnson and
Trick 1996) and COLOR04 (http://mat.gsia.cmu.edu/COLOR04/) graph instances,
where C2000.5 is a large graph from the clique part of the DIMACS Challenge. Some
easy graphs are excluded, such as: (a) the graphs that can be reduced into trivially
(Cheeseman et al. 1991; Chiarandini 2005), such as games120, Book (5 graphs),
Miles (5 graphs), and MIZ graphs (4 graphs); or (b) the graphs that can be solved
efficiently by simple heuristics including DSatur (Brélaz 1979) and XRLF (Johnson et
al. 1991), such as MYC (5 graphs), REG (14 graphs), CAR, and most Queen Graphs,
which may due to 1-perfect (Coudert 1997) or the distribution in node degrees (Walsh
2001).

Table 3 summaries the results on the challenging graph instances by #STD of
MAFS and existing algorithms. For each graph, |V | is the number of vertices, d is
the density, and K∗ is the best-known color size. For #STD, NR = 10 trials are run,
then the mean results of ps,Tm, and TR are reported for the K . It also summaries
the best color sizes achieved by some existing algorithms, including DSatur (DS)
(Brélaz 1979) tested in Galinier et al. (2008), XRLF (XR) (Johnson et al. 1991) tested

http://mat.gsia.cmu.edu/COLOR04/
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Table 3 Results on challenging graph instances by #STD and some existing algorithms

Graph |V | d K∗ K ps Tm TR DS XR TC IG SI MIPS ILS AMA IA ABA

abb313GPIA 1557 0.04 9 9 1.00 19.3 22.0 11 12 9 11 9

ash958GPIA 1916 0.01 4 4 1.00 6.35 5.90 6 5 4 6 4

C2000.5 2000 0.50 162 150 0.60 70.9 410 188 165 162

DSJC125.5 125 0.50 17 17 1.00 0.29 51.2 21 18 18 17 17 17 17 18 17

DSJC250.5 250 0.50 28 28 1.00 2.00 110 38 29 28 32 28 28 28 28 28 29

DSJC500.5 500 0.50 48 48 0.80 7.70 173 67 50 49 57 49 49 50 48 50

DSJC1000.5 1000 0.50 83 84 0.90 31.8 296 114 86 89 102 89 88 90 84 91

DSJC1000.9 1000 0.90 224 223 0.40 17.8 285 297 232 228 227 224 229

DSJR500.1c 500 0.97 85 85 1.00 1.77 8.70 87 91 85 85 85 86 85

flat300_26_0 300 0.48 26 26 1.00 0.10 20.2 41 33 36 26 26 26 26 27 26

flat300_28_0 300 0.48 31 31 1.00 2.49 103 41 33 32 35 31 31 31 31 32 31

flat1000_50_0 1000 0.49 50 50 1.00 0.86 53.5 112 84 50 50 50 88 50 50

flat1000_60_0 1000 0.49 60 60 0.50 1.97 222 113 87 100 60 60 89 60 60

flat1000_76_0 1000 0.49 83 83 0.90 27.0 280 114 87 87 102 89 87 89 84 84

latin_square_10 900 0.76 98 104 0.20 109 235 126 117 105 98 99 103 104 100

le450_15c 450 0.17 15 15 1.00 0.13 7.10 24 19 16 25 15 15 15 15 15 15

le450_25c 450 0.17 26 27 1.00 0.52 0.40 29 27 26 26 26 26 26

qg.order100 10000 0.02 100 100 1.00 0.49 0.00 103 100 100 100

queen16_16 6320 0.19 17 18 1.00 0.03 0.00 21 17 18 17 18

school1_nsh 352 0.31 14 14 1.00 0.08 0.20 15 19 14 20 14 14 15 14

in Chiarandini (2005), Tabucol (TC) (Hertz and de Werra 1987) tested in Galinier and
Hao (1999), iterated greedy algorithm (IG) (Culberson and Luo 1996), S-IMPASSE
(SI) (Morgenstern 1996), iterated local search (ILS) (Chiarandini 2005), minimal-
state processing search (MIPS) (Funabiki and Higashino 2000), adaptive memory
algorithm (AMA) (Galinier et al. 2008), immune algorithm (IA) (Cutello et al. 2007),
and ant-based algorithm (ABA) (Bui et al. 2008). Bold face indicates that the color
size is not worse than K∗. It shows that #STD is competitive to the state-of-the-
art algorithms in achieving K∗. It is impressive that #STD obtains new K results
for two large graphs in high densities, i.e., C2000.5 and DSJC1000.9. It also shows
that qg.order100 can be solved only by the stable LS in the stage of initialization.
For latin_square_10, MAFS is not very efficient, which may due to the additional
symmetry that all the vertices are in the same degree.

For all the following experiments, NR = 100 trials are run for each case so as to
achieve more reliable statistics of the performance indices. In consideration of the
limited available computational resources, we will focus on a small subset of the
challenging graph instances, which includes: (a) four random graphs, DSJC250.5,
DSJC500.5, DSJC1000.5, and DSJC1000.9; (b) two flat graphs, flat300_28_0 and
flat1000_76_0; and (c) two structural Leighton graphs, le450_15c and le450_25c.

In Table 4, #STD and the hybrid coloring algorithm (HCA) (Galinier and Hao
1999) are compared on the KS color series (K = 84 for DSJC1000.5 and K = 27 for
le450_25c). HCA (Galinier and Hao 1999) maintains a state set supporting a FS, i.e.,
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Table 4 The mean results achieved by HCA (Galinier and Hao 1999) and #STD

Graph KS HCA (Galinier and Hao 1999) #STD

LC NR ps Tm TR ps Tm TR rg/p �p̃S

DSJC250.5 28 2000 10 0.90 0.49 235 0.90 1.87 102 0.026 −0.0998

DSJC500.5 48 5600 10 0.50 4.90 865 0.75 9.64 210 0.019 0.0056

DSJC1000.5 84 16000 5 0.60 20.7 1283 0.94 27.5 271 0.017 0.2357

flat300_28_0 31 2000 10 0.60 0.64 790 1.00 3.31 123 0.022 0.0086

flat1000_76_0 83 16000 5 0.80 17.5 1008 0.93 28.5 286 0.017 0.0028

le450_15c 15 5600 10 0.60 0.19 24 1.00 0.14 7.91 0.172 0.5193

le450_25c 27 4000 10 1.00 0.09 18 1.00 0.49 0.31 0.003 −

Fig. 2 Run-length distribution (RLD) for #STD on the graphs

GPX+Tabucol, which performs the FS only once at each cycle. In addition, HCA
can be considered as the anterior version of AMA (Galinier et al. 2008) (cf. Table 3).
In HCA, the size of the state set is fixed as 10, and the LS chain length (LC) values
of Tabucol have to be adjusted for different instances. We can use �p̃S = pS − p̃∗

S ,
where p̃∗

S = 1 − (1 − p∗
S)Tm/T ∗

m , to achieve an approximate comparison between the
algorithm in 〈pS,Tm〉 and the reference algorithm in 〈p∗

S, T ∗
m〉, under the condition

that p∗
S < 1. In Table 3, HCA is chosen as the reference algorithm, and the results of

the seven graphs indicate that #STD achieves positive �p̃S values over HCA on all
the graphs except for DSJC250.5 and le450_25c. The better performance of HCA on
DSJC250.5 and le450_25c might be due to the usage of Tabucol (Hertz and de Werra
1987). Both DSJC250.5 and le450_25c can be solved by Tabucol, and Tabucol is
much more efficient than HCA in solving le450_25c (Galinier and Hao 1999).

Figure 2 gives the empirical run-length distribution (RLD) for the GCP instances
solved by #STD, where RLD provides adequate information to describe the be-
havior of an algorithm (Hoos and Stützle 1998). It can be seen that the steep-
ness in every case is quite well, where above 50% trials have achieved the opti-
mum in a Tm within one order of magnitude. Moreover, abrupt changes and heavy
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Table 5 The mean results achieved by GPB (Glass and Prugel-Bennett 2003) and #STD.L

Graph K∗ GPB (Glass and Prugel-Bennett 2003) #STD.L

NP LI ps Tm TR NP LI ps Tm TR

DSJC250.5 28 100 100 1.00 11.7 118 100 100 1.00 6.73 81.8

DSJC500.5 48 100 500 1.00 485 686 100 500 1.00 122 172

DSJC1000.5 83 500 100 0.33 690 239 500 50 0.45 508 244

flat300_28_0 31 100 100 1.00 52.7 435 25 100 1.00 4.28 117

flat1000_76_0 83 100 200 1.00 177 305 100 50 1.00 83.2 195

le450_15c 15 100 100 1.00 1.9 11 25 100 1.00 0.16 7.74

le450_25c 26 100 500 1.00 2341 1571 25 500 1.00 211 89.1

tails (Gomes and Selman 2001) are found in some cases, such as le450_25c and
DSJC250.5, which may result from the stagnation in certain large benches or lo-
cal minima. Such abrupt slowdowns appear in the later search stage, which may
be improved through running MAFS multiple times (Gomes and Selman 2001;
Hoos and Stützle 1998).

In Table 5, #STD.L and the GPB algorithm (Glass and Prugel-Bennett 2003) are
compared on the K∗ color series. Here #STD.L is defined as #STD with different
NP and LI values, where each parameter is set as a value that is not larger than that
of GPB and is not less than that of #STD. GPB (Glass and Prugel-Bennett 2003) is
a generational genetic algorithm manipulating a FS strategy, i.e., GPX+VDS. For
GPB, only NR = 3 trials were run for each graph instance. In order to evaluate each
performance index of an algorithm over multiple instances, we define a rv value for
each performance index of the algorithm as follows: (a) choose the reference algo-
rithm; (b) compute the ratio of each performance index between the algorithm and
the reference algorithm for each instance; and (c) calculate the geometric mean value
of all the ratios over all the instances. For ps , rv > 1 is preferable; for Tm or NX ,
rv < 1 is preferable. The results in Table 5 show that #STD.L produces a dominating
performance over GPB. By taking GPB as the reference algorithm, the rv values of
#STD.L are rv = 1.045 for ps, rv = 0.227 for Tm, and rv = 0.212 for NX .

The standard MAFS version has two main parameters, NP and LI . The larger
is the NP , the more agents the system has. The larger is the LI for a stable RLS,
the more powerful capability in finding the exits from benches the strategy has. By
comparing #STD.L and #STD, usage of large NP and/or LI has two implications
for MAFS, which, in one hand, leads to a better solution quality, as demonstrated on
DSJC1000.5 and le450_25c where the K∗ is achieved, but in another hand, makes
MFAS require more computational cost, as shown by the other instances.

The performance of MAFS may be further enhanced through employing one of
more advanced strategies in its RLS that not only explores other local valleys but also
increases the diversity of the newly generated information (Galinier and Hao 1999),
such as Tabucol (Hertz and de Werra 1987), ERA (Liu et al. 2002), Neural Network
(Di Blas et al. 2002), Extremal Optimization (Boettcher and Percus 2004), etc. In
addition, the knowledge components of MAFS may be further improved by utilizing
certain structural information and the related knowledge, if necessarily. For example,
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RT may use the quality information in a landscape (Xie and Liu 2005), and may also
combine it with certain auxiliary methods, such as a Boltzmann acceptance criteria
in Simulated Annealing (Johnson et al. 1991). Moreover, both RFS and RSP may be
turned to be more intelligent by utilizing certain population information of XSE , such
as Kullback entropy (Cutello et al. 2007).

5.2 Search characteristics

Although a stable RLS cannot tackle with any kinds of ruggedness, i.e., local minima
in a landscape, it can lead to better states by finding the exits from benches (Frank
et al. 1997), where each bench is a plateau but not a local minimum in a landscape.
Hence when a stable RLS is used in MAFS, such as VDS or R

QT
LS , the neutrality in a

landscape is mainly exploited by the stable RLS rule, while the ruggedness is mainly
explored by the RXS rule under the management of the multiagent framework.

Table 6 lists the results of the MAFS versions with different components in RFS,
which are applied to the KS color series. The version #LS.VD is defined by using the
VDS as the RLS. Then three MAFS versions are realized, where each uses a differ-
ent component for RSTD

XS:G: (a) #GPP.E, which uses RE
GPP for the RGPP; (b) #GPP.IS,

which uses RIS
GPP for the RGPP; and (c) #GVR.KF, which uses RKF

GVR for the RGVR.
Moreover, the reference algorithm for calculating the rv values is #STD (cf. Table 4).

Local search The advantage of long LS chains is shown in the results by #STD.L
(cf. Table 5) and #STD (cf. Table 4), where #STD.L simply uses a larger LI value for
solving le450_25c, which is able to obtain better K than #STD does. For R

QT
LS , LI > 1

simply means it walks on a plateau at the last round, since it takes stable moves for all
the unfixed vertices with its RSYS

LSR. The advantage of the stable LS using a larger LI

value clearly indicates the significance of the search on plateaus. Moreover, it implies
that some benches are quite large, thus the local search hardly finds the exits.

By comparing the results between #LS.VD (cf. Table 6) and #STD (cf. Table 4)
which are realized under two stable RLS rules, i.e., VDS and R

QT
LS , respectively, two

facts are indicated: (a) most 1-moves are spent on plateaus, maybe in different levels,
according to the quite small rg/p values (<0.05) in Tables 4 and 6, where each rg/p

Table 6 The mean results by MAFS versions in different LS and XS rules

Graph KS #LS.VD #GPP.E #GPP.IS #GVR.KF

ps Tm rg/p ps Tm ps Tm ps Tm

DSJC250.5 28 0.82 3.82 0.010 0.68 3.70 0.97 2.20 0.78 2.59

DSJC500.5 48 0.55 15.9 0.009 0.34 14.9 0.88 12.3 0.31 7.64

DSJC1000.5 84 0.56 46.1 0.008 0.35 38.5 0.96 33.4 0.25 21.2

flat300_28_0 31 0.98 5.38 0.010 0.75 6.49 1.00 4.13 0.93 2.98

flat1000_76_0 83 0.51 41.8 0.009 0.22 37.7 0.99 33.6 0.20 23.1

le450_15c 15 1.00 0.52 0.038 0.89 0.22 1.00 0.14 0.95 0.13

le450_25c 27 1.00 0.55 0.003 1.00 0.52 1.00 0.60 1.00 0.56

rv – 0.80 1.78 0.463 0.57 1.51 1.05 1.19 0.56 0.94
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gives the ratio of the number of greedy 1-moves (�f < 0) over that of plateau 1-
moves (�f ≡ 0); and (b) VDS is less efficient in the plateau search than R

QT
LS , since

#LS.VD obtains worse ps and higher Tm by using a larger ratio of plateau 1-moves
(according to that rv = 0.463 for rg/p). Compared with VDS, R

QT
LS uses an additional

tabu matrix to restrict the input color list at the local level, which may forbid many
unpromising plateau moves. For LS strategies, there are three intuitive measures of
effectiveness (Schuurmans and Southey 2001): depth, mobility, and coverage. R

QT
LS

with the tabu matrix may be efficient in leading the search to a better coverage than
VDS in consideration of that the depth and mobility of both strategies are same on
each plateau, where coverage measures how systematically the search explores the
entire plateau (Schuurmans and Southey 2001).

Recombination search The RXS rule, under the management of the multiagent
framework, plays a major role in navigating the search in a rugged landscape, es-
pecially when a stable RLS is employed as the low-level strategy in the fusion search.
Specifically, for GCP, the grouping-based RXS rule (RXS:G) works on group sets.

The MAFS versions #GPP.E, #GPP.IS, and #STD are realized by simply using the
different RGPP rules, i.e., RE

GPP,RIS
GPP, and RMIS

GPP, respectively. The results in Table 6
show that #GPP.D achieves a much worse performance while #GPP.IS achieves a
similar performance, when they are compared with #STD.

Together with RE
GPP,RAG

GGP simply leads to a HM in a large VHD size, and then the
RGVR rule can achieve a Hinc in the same VHD size of the HM .

Together with either RIS
GPP or RMIS

GPP,RAG
GGP leads to a stable HM in a large c-core

size (VCC). Firstly, the c-core of stable group set achieved by either RIS
GPP or RMIS

GPP
is a superset of that by RE

GPP. Secondly, RAG
GGP can achieve a stable HM with a larger

VCC size if the misleading information from the critical vertices on the group sizes
is excluded. Then the RGVR rule can achieve a Hinc in the same VCC size of the
stable HM .

The RXS:G rule may prefer to obtain a HM in a large VCC size instead of in a large
VHD size, so as to achieve a Hinc in a large VCC size. Moreover, each parent group set
associated with a high-quality state is preferable to have a large VCC size.

Some advanced methods for improving independent sets, such as those studied in
the column generation approach (Mehrotra and Trick 1996) and lmXRLF (Kirovski
1998), may also be used to enhance the c-core size of a stable group set by applying
to certain groups in the group set.

The MAFS versions #GVR.KF and #STD are realized by using the different RGVR

rules, i.e., RKF
GVR and RKR

GVR, respectively. The results in Table 6 indicate that using of
RKR

GVR can achieve a better performance than RKF
GVR. Removing a few vertices from

a group allows the group to be evolved locally through adding the new vertices per-
formed by the RVA rule. Although each group extracted from a high-quality state
may be rather stable, a large group is not necessarily a superset of certain proper
color class. Hence, the advantage of using the unbiased RKR

GVR might result from that
RKR

GVR allows all the related groups to be evolved, even the large groups.

Decentralized interaction Table 7 summaries the results on the KS color series by
four MAFS versions with a decentralized G(NP ,NL) model at different density values,
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Table 7 The results by MAFS versions for IPNET in different NL/NP values (from 0.2 to 0.8)

Graph KS NL/NP = 0.2 NL/NP = 0.4 NL/NP = 0.6 NL/NP = 0.8

ps Tm ps Tm ps Tm ps Tm

DSJC250.5 28 0.96 1.84 0.91 2.05 0.87 2.15 0.94 1.88

DSJC500.5 48 0.65 11.3 0.80 9.18 0.76 10.8 0.76 10.6

DSJC1000.5 84 0.93 27.5 0.94 26.7 0.93 28.2 0.93 28.0

flat300_28_0 31 0.99 3.32 1.00 3.00 1.00 3.31 1.00 3.21

flat1000_76_0 83 0.94 30.4 0.92 28.7 0.92 26.9 0.94 25.7

le450_15c 15 0.96 0.14 0.97 0.14 0.98 0.14 0.99 0.14

le450_25c 27 1.00 0.50 1.00 0.55 1.00 0.48 1.00 0.52

rv – 0.98 1.03 1.00 1.01 0.99 1.03 1.01 1.01

where NL/NP values are 0.2, 0.4, 0.6, and 0.8, respectively. A larger NL value means
both a faster diffusion of the local information and a slower diffusion of the global
information. Here the reference algorithm in calculating the rv values is #STD, where
NL/NP is 1.0. Table 7 shows that the rv values of ps and Tm for each case are
closed to 1 when NL/NP varies from 1.0 to 0.2, meaning the performances of these
MAFS versions are quite robust, which may be due to the good balance between the
diffusions of the local and global information in the networks.

As a multiagent model, MAFS may have an advantage in the robust parallel com-
puting, as agents may be designed to locate at different processors in a network. This
may be useful in practice since solving large graphs is quite time-consuming.

Firstly, MAFS stores declarative knowledge by the MA of agents and distributed
the knowledge to the nodes, which make the algorithm very robust because there is
not any key node(s) in this case, meaning the nodes will not fail occasionally dur-
ing a run. The centralized memory is a typical example of a key node, which is re-
quired by many frameworks, such as Immune Algorithms (Cutello et al. 2007), Scat-
ter Search (Hamiez and Hao 2001), Genetic Algorithms (Fleurent and Ferland 1996;
Glass and Prugel-Bennett 2003; Mumford 2006), and Adaptive Memory Program-
ming (Galinier et al. 2008), etc.

Secondly, the communication of each agent is simply spent on accessing one (or
a few) state(s) memorized by other nodes during each learning cycle. Hence, the
communication cost may be neglected in comparison with the computation cost.

Thirdly, MAFS may still work well even if the interaction network is sparse, as in-
dicated in Table 7, MAFS possesses a robust performance in the topologies with var-
ied NL/NP values. In a real world, the mode of networks is often partially connected,
i.e., some connections may be invalid under certain physical network conditions.

Of course, in order to make MAFS support a communication between the agents
in the real world, more efforts must be employed on the physical infrastructure. In
addition, the current IPNET model is quite artificial, thus more experiments should be
performed to evaluate its robustness. Another two interesting issues are to analyze the
cooperative solving features of MAFS under various topologies (Cioffi-Revilla 2002),
and to study if some of the features may boost the performance. Moreover, non-
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uniform models (Walsh 2001) such as small-world, ultrametric, power-law models,
etc., including certain dynamic topologies, may be worthy further consideration.

PAC property MAFS is not necessarily probabilistically approximately complete
(PAC) (Hoos 1999), according to the law of bounded rationality (Gigerenzer and
Goldstein 1996) it follows.

However, MAFS can achieve PAC in a simple way. Firstly, MAFS is PAC if the
RFS of any agent is PAC. Secondly, the RFS rule is PAC if: (a) its RLS rule is PAC; or
(b) its RXS:G rule is PAC and its RLS rule preserves the best state ever found. Thirdly,
the PAC may be also achieved by some meta RLS rules. For example, a meta RLS rule
is PAC if it is chained by both a RLS rule in PAC and a stable RLS rule.

In fact, to find a RLS rule in PAC is no difficult. For example, it is easy to prove
that the random walk strategy (RRW

LS ), i.e., 〈RRW
LSL,RP

LSR〉, is PAC.
At each round, the probability of determining whether a vertex is moved by RRW

LSL is
VRW/|V |, and the probability of assigning the vertex with each color by RP

LSR is 1/K .
Hence the probability for assigning each vertex with each color is VRW/(|V | · K).
For any incumbent state, the probability of achieving a proper coloring is (VRW/

(|V | · K))|V |, which is larger than zero since VRW > 0 and both |V | and K are finite
values. Hence RRW

LS is PAC if t → ∞ according to Theorem 2 in Hoos (1999), i.e., any
algorithm which, for any incumbent state, executes a random walk with a probability
of at least larger than 0 at any given time, is PAC.

6 Conclusions

In this paper, a multiagent fusion search (MAFS) is presented as a realization of
a multiagent optimization framework to solve the graph coloring problem (GCP).
A fusion search includes a recombination search (XS) working in a navigation role
and a local search (LS) in an exploitation role. In MAFS, each of agents performs the
fusion search with extremely limited knowledge in its personal declarative memory
and cooperates with others through a decentralized interaction protocol in the envi-
ronment, thus the agents are able not only to explore in parallel but also to achieve a
collective performance under the law of socially biased individual learning.

Compared with some state-of-the-art coloring algorithms, MAFS is competitive
in both the solution quality and the computational cost when applied to some hard
graphs. In addition, MAFS improves the best known results of two large graphs.

In addition, we have investigated the search characteristics of the components of
MAFS. The experimental results show that the Quasi-Tabu LS and grouping-based
XS strategies are especially useful for tackling with neutrality and ruggedness in the
GCP landscape. A simple analysis indicates that MAFS can achieve probabilistically
approximately complete in an easy way. The potential advantage of the decentralized
interaction protocol in a robust parallel computing is discussed as well.

Future research is suggested to: (a) achieve a scalable performance by the agents
with adaptive strategies; (b) explore certain cooperative problem solving features by
investigating the performances with real-world interaction protocols; and (c) study
MAFS with suitable components to solve other hard computational problems.



J Comb Optim (2009) 18: 99–123 121

References

Anderson JR (2005) Human symbol manipulation within an integrated cognitive architecture. Cogn Sci
29(3):313–341

Bandura A (1977) Social learning theory. Prentice Hall, Englewood Cliffs
Barbosa VC, Assis CAG, do Nascimento JO (2004) Two novel evolutionary formulations of the graph

coloring problem. J Comb Optim 8(1):41–63
Barnier N, Brisset P (2004) Graph coloring for air traffic flow management. Ann Oper Res 130(1–4):163–

178
Boese KD, Kahng AB, Muddu S (1994) A new adaptive multi-start technique for combinatorial global

optimizations. Oper Res Lett 16:101–113
Boettcher S, Percus AG (2004) Extremal optimization at the phase transition of the three-coloring problem.

Phys Rev E 69(6):Art066703
Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford

University Press, London
Brélaz D (1979) New methods to color the vertices of a graph. Commun ACM 22(4):251–256
Bui TN, Nguyen TH, Patel CM, Phan K-AT (2008) An ant-based algorithm for coloring graphs. Discrete

Appl Math 156(2):190–200
Cheeseman P, Kanefsky B, Taylor WM (1991) Where the really hard problems are. In: International joint

conference on artificial intelligence, San Mateo, CA, pp 331–337
Chiarandini M (2005) Stochastic local search methods for highly constrained combinatorial optimisation

problems. PhD thesis, Darmstadt University of Technology, Germany
Cioffi-Revilla C (2002) Invariance and universality in social agent-based simulations. Proc Natl Acad Sci

USA 99(3):7314–7316
Coudert O (1997) Exact coloring of real-life graphs is easy. In: Design automation conference, San Fran-

cisco, CA, USA, pp 121–126
Culberson JC, Luo F (1996) Exploring the k-colorable landscape with iterated greedy. In: Cliques, col-

oring, and satisfiability: second DIMACS implementation challenge. Am Math Soc, Providence, pp
245–284

Curran D, O’Riordan C (2006) Increasing population diversity through cultural learning. Adapt Behav
14(4):315–338

Cutello V, Nicosia G, Pavone M (2007) An immune algorithm with stochastic aging and kullback entropy
for the chromatic number problem. J Comb Optim 14(1):9–33

Di Blas A, Jagota A, Hughey R (2002) Energy function-based approaches to graph coloring. IEEE Trans
Neural Netw 13(1):81–91

Dietterich TG (1986) Learning at the knowledge level. Mach Learn 1:287–316
Dorne R, Hao JK (1998) A new genetic local search algorithm for graph coloring. In: International con-

ference on parallel problem solving from nature, Amsterdam, NL, pp 745–754
Edgington T, Choi B, Henson K, Raghu TS, Vinze A (2004) Adopting ontology to facilitate knowledge

sharing. Commun ACM 47(11):85–90
Eppstein D (2003) Small maximal independent sets and faster exact graph coloring. J Graph Algorithms

Appl 7(2):131–140
Erben W (2000) Grouping genetic algorithm for graph colouring and exam timetabling. In: International

conference on practice and theory of automated timetabling, Konstanz, Germany, pp 132–156
Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. J Heuristics 2(1):5–30
Fleurent C, Ferland JA (1996) Genetic and hybrid algorithms for graph coloring. Ann Oper Res 63:437–

464
Fragaszy D, Visalberghi E (2004) Socially biased learning in monkeys. Learn Behav 32(1):24–35
Frank J, Cheeseman P, Stutz J (1997) When gravity fails: local search topology. J Artif Intell Res 7:249–

281
Funabiki N, Higashino T (2000) A minimal-state processing search algorithm for graph coloring problems.

IEICE Trans Fundam Electron Commun Comput Sci E 83A(7):1420–1430
Galef BG (1995) Why behaviour patterns that animals learn socially are locally adaptive. Anim Behav

49(5):1325–1334
Galinier P, Hao J-K (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3(4):379–

397
Galinier P, Hertz A (2006) A survey of local search methods for graph coloring. Comput Oper Res

33(9):2547–2562



122 J Comb Optim (2009) 18: 99–123

Galinier P, Hertz A, Zufferey N (2008) An adaptive memory algorithm for the k-colouring problem. Dis-
crete Appl Math 156(2):267–279

Gebremedhin AH, Manne F, Pothen A (2005) What color is your Jacobian? Graph coloring for computing
derivatives. SIAM Rev 47(4):629–705

Gigerenzer G, Goldstein DG (1996) Reasoning the fast and frugal way: models of bounded rationality.
Psych Rev 103(4):650–669

Glass CA, Prugel-Bennett A (2003) Genetic algorithm for graph coloring: exploration of Galinier and
Hao’s algorithm. J Comb Optim 7(3):229–236

Glenberg AM (1997) What memory is for. Behav Brain Sci 20(1):1–55
Gomes CP, Selman B (2001) Algorithm portfolios. Artif Intell 126(1–2):43–62
Hamiez J-P, Hao J-K (2001) Scatter search for graph coloring. In: International conference on artificial

evolution, Le Creusot, France, pp 168–179
Hertz A, de Werra D (1987) Using tabu search techniques for graph coloring. Computing 39:345–351
Hoos HH (1999) On the run-time behaviour of stochastic local search algorithms for SAT. In: National

conference on artificial intelligence, Orlando, FL, pp 661–666
Hoos HH, Stützle T (1998) Evaluating Las Vegas algorithms—pitfalls and remedies. In: Conference on

uncertainty in artificial intelligence, Madison, WI, pp 238–245
Johnson DS, Aragon CR, McGeoch LA, Schevon C (1991) Optimization by simulated annealing: an ex-

perimental evaluation; part II, graph coloring and number partitioning. Oper Res 39(3):378–406
Johnson DS, Trick MA (eds) (1996) Cliques, coloring, and satisfiability: second DIMACS implementation

challenge. Am Math Soc, Providence
Joslin DE, Clements DP (1999) “Squeaky wheel” optimization. J Artif Intell Res 10:353–373
Khanna S, Linial N, Safra S (2000) On the hardness of approximating the chromatic number. Combinator-

ica 20(3):393–415
Kirovski D (1998) Efficient coloring of a large spectrum of graphs. In: Design automation conference, San

Francisco, CA, USA, pp 427–432
Lerman K, Galstyan A (2003) Agent memory and adaptation in multi-agent systems. In: International

conference on autonomous agents and multi-agent systems, Melbourne, Australia, pp 797–803
Liu J, Han J, Tang YY (2002) Multi-agent oriented constraint satisfaction. Artif Intell 136(1):101–144
Liu J, Jin X, Tsui K-C (2005) Autonomy Oriented Computing (AOC): From problem solving to complex

systems modeling. Kluwer Academic, Dordrecht
Liu J, Tsui K-C (2006) Toward nature-inspired computing. Commun ACM 49(10):59–64
Mehrotra A, Trick M (1996) A column generation approach for graph coloring. INFORMS J Comput

8(4):344–354
Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assign-

ment problem. IEEE Trans Evol Comput 4(4):337–352
Mezard M, Palassini M, Rivoire O (2005) Landscape of solutions in constraint satisfaction problems. Phys

Rev Lett 95(20):Art200202
Morgenstern C (1996) Distributed coloration neighborhood search. In: Cliques, coloring, and satisfiability:

second DIMACS implementation challenge. Am Math Soc, Providence, pp 335–358
Mumford CL (2006) New order-based crossovers for the graph coloring problem. In: International confer-

ence on parallel problem solving from nature, Reykjavik, Iceland, pp 880–889
Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs
Nowicki E (1996) A fast tabu search algorithm for the permutation flow shop problem. Eur J Oper Res

91:160–175
Reeves CR, Yamada T (1998) Genetic algorithms, path relinking, and the flowshop sequencing problem.

Evol Comput 6(1):45–60
Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44(1):3–54
Schuurmans D, Southey F (2001) Local search characteristics of incomplete SAT procedures. Artif Intell

132(2):121–150
Selman B, Kautz HA (1993) An empirical study of greedy local search for satisfiability testing. In: National

conference on artificial intelligence, Washington, DC, USA, pp 46–51
Selman B, Kautz HA, Cohen B (1994) Noise strategies for improving local search. In: National conference

on artificial intelligence, Seattle, WA, pp 337–343
Smith MD, Ramsey N, Holloway G (2004) A generalized algorithm for graph-coloring register allocation.

ACM SIGPLAN Not 39(6):277–288
Stone P, Veloso M (2000) Multiagent systems: a survey from a machine learning perspective. Auton Robots

8(3):345–383



J Comb Optim (2009) 18: 99–123 123

Trick MA, Yildiz H (2007) A large neighborhood search heuristic for graph coloring. In: International
conference on integration of AI and OR techniques in constraint programming for combinatorial
optimization problems, Brussels, Belgium, pp 346–360

Walsh T (2001) Search on high degree graphs. In: International joint conference on artificial intelligence,
Seattle, Washington, USA, pp 266–274

Weyns D, Holvoet T (2005) On the role of environments in multiagent systems. Informatica 29:409–421
Xie X-F, Liu J (2005) A compact multiagent system based on autonomy oriented computing. In:

IEEE/WIC/ACM international conference on intelligent agent technology, Compiègne, France,
pp 38–44

Xie X-F, Liu J (2006) How autonomy oriented computing (AOC) tackles a computationally hard opti-
mization problem. In: International joint conference on autonomous agents and multiagent systems,
Hakodate, Japan, pp 646–653

Xie X-F, Zhang W-J (2004) SWAF: swarm algorithm framework for numerical optimization. In: Genetic
and evolutionary computation conference, Seattle, WA, pp 238–250

Zhang W (2004) Configuration landscape analysis and backbone guided local search. Artif Intell 158(1):1–
26


	Graph coloring by multiagent fusion search
	Abstract
	Introduction
	Multiagent optimization framework
	Basic concepts
	Compact agent
	Environment
	Working process
	Summary

	Multiagent fusion search (MAFS)
	The implementation for GCP
	Internal representation (IR)
	Local search
	The local level
	The round level
	The meta level
	The instances

	Recombination search
	Preprocessing
	Group-picking
	Vertices-removing
	The instances

	Standard MAFS version

	Experimental results and discussions
	Basic performance
	Search characteristics
	Local search
	Recombination search
	Decentralized interaction
	PAC property


	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




