
A Mini-Swarm for the Quadratic Knapsack Problem
Xiao-Feng Xie

Department of Computer Science,
Hong Kong Baptist University,

Kowloon Tong, Hong Kong
Email: xiexf@ieee.org

Jiming Liu
Department of Computer Science,

Hong Kong Baptist University,
Kowloon Tong, Hong Kong

Email: jiming@comp.hkbu.edu.hk

Abstract- The 0-1 quadratic knapsack problem (QKP) is a
hard computational problem, which is a generalization of the
knapsack problem (KP). In this paper, a mini-Swarm system
is presented. Each agent, realized with minor declarative
knowledge and simple behavioral rules, searches on a
structural landscape of the problem through the guided
generate-and-test behavior under the law of socially biased
individual learning, and cooperates with others by indirect
interactions. The formal decomposition of behaviors allows
understanding and reusing elemental operators, while utilizes
the heuristic information on the landscape. The results on a
collection of the QKP instances by mini-Swarm versions are
compared with that of both a branch-and-bound algorithm
and a greedy genetic algorithm, which show its effectiveness.

I. INTRO DUCTION

The 0-1 quadratic knapsack problem (QKP) was
introduced by Gallo et al. [20], which consists in choosing
elements from n items for maximizing a quadratic profit
objective function subject to a linear capacity constraint.
The QKP is a generalization of the 0-1 knapsack problem
(KP) [38], by restricting all the quadratic coefficients to
zero. The knapsack problems [38] have been intensively
studied due to both its theoretical interest and its wide
practical applicability. Due to its generality, the QKP has
more practically applications [3, 20], moreover, several
graph problems can be formulated as the QKP [4, 45].

The KP is NP-hard, although it can be solved exactly in
pseudo-polynomial time through dynamic programming
based on Bellman recursion [21]. As a generalized version,
the QKP is much harder than the KP [10, 45], where the
graph structure associated with coefficients of objective
function plays a important role in its solution [46].

Due to the NP-hardness in strong sense, the research
efforts on solving the QKP may focus on exact methods,
approximate algorithms and heuristic methods.

Classical exact methods [39] for solving the QKP are
the branch and bound (B&B) algorithms, where numerous
upper bounds have been obtained, by using techniques
such as derivation of upper planes [20], Lagrangian
relaxation [24], reformulation [10], linearization [3],
Lagrangian decomposition [4, 5, 41], semidefinite
relaxation [26], and reduction strategies [24, 45], etc.

The studies on approximate algorithms, which seek
guaranteed polynomial-time performance on approximate
solution, were only limited on some special cases of the
QKP, such as the classical KP [30], and the QKP where
the underlying graph is edge series-parallel [46], etc.

The heuristic methods arise from practical interest,
which try to find good solution in high probability with
acceptable computational efforts by considering certain
imprecise knowledge on the structure of the problem. The
linearization and exchange (LEX) heuristic [24] uses the
best linear L2-approximation to build an associated linear
KP and use it for determining items in a greedy way to
form a good initial solution, which is then improved by an
exchange method between certain items. Hua et al. [29]
studied on the convex QKP by an approximate dynamic
programming approach. Julstrom [32] also illustrated the
capability of several heuristics, including greedy, genetic
and greedy genetic algorithms on the QKP.

Swarm algorithms [7, 16, 34] address on tackling a
specified optimization task by multiple interacting agents,
where each agent works under bounded rationality by
executing simple procedural rules according to available
heuristic information in iterative cycles. Compared with
the individuals in genetic algorithms (GAs) [27], the
agents also utilize certain form of socially sharing
information for achieving emergent collective behavior,
but they work in learning paradigm and are not subjected
to the “survival of the fittest” principle. Some examples
are ant colony optimization (ACO) [15], particle swarm
optimization (PSO) [12, 33], and others [25, 54], etc.

The compact multiagent optimization system (MAOS)
[56] based on autonomy-oriented computing [37] has
been a framework for situating certain algorithms [6, 33,
48]. Similar to the particle [33], each agent [56] in the
MAOS has a moderate problem solving capability with
two basic features: a) addresses on possessing of the long-
term declarative memory [1] in limited capacity, which is
modified reactively by itself only, instead of operating as
sophisticated as in cognitive architectures [1, 35, 50]; and
b) achieves complex problem solving by simple guided
generate-and-test behavior [55, 57] under the law of
socially biased individual learning (SBIL) [9, 19], a fast-
and-frugal heuristic [22] under bounded rationality
adopted by many species in the real world.

In this paper, a mini-Swarm system for solving the QKP
is presented. It is realized in a simplified way from the
MAOS [56], while keeps both of its basic features.
Specially, each agent searches on a structural landscape of
the problem based on extremely limited declarative
knowledge, while the socially sharing information is
achieved by referring from all agents. Moreover, the
formal decomposition of behaviors is addressed explicitly,
which allows agents adopting some well-studied operators.

IEEE Swarm Intelligence Symposium (SIS), Honolulu, HI, USA, 2007: 190-197

[Cooperative Group Optimization] http://www.wiomax.com/optimization

The remainder of the paper is organized as follows. In
Section II, the details of the mini-Swarm system are
presented. Then in Section III, the QKP itself is
introduced. In Section IV, the implementation of a mini-
Swarm optimizer for the QKP is described. In Section V,
the extensive experimental results by the mini-Swarm,
using an online collection of the QKP instances, are
compared with those of some existing algorithms [5, 32].
Finally, this paper is concluded in the Section VI.

II. THE MINI-SWARM SYSTEM

The mini-Swarm system consists of a society of N
agents, which cooperate in a socially sharing environment
(E) [52] for realizing the common intention of finding
high-quality solution for an optimization task.

Moreover, the system runs in iterative cycles. For a run,
the number of running cycles is TRUN, which is determined
by specified termination conditions. At t=0, the system is
initialized. The system can be analyzed in each cycle by
executing as a Markov chain process, where the system
behavior at the tth ([1,]RUNt T∈) cycle only depends on
the its long-term memorized status at the (t-1)th cycle.

Figure 1 shows one of the agents and the environment it
roams. Each agent has a limited long-term declarative
memory manipulated by itself only and is communicated
with others by indirect interactions, which are implicit
implemented through the environment. Moreover, the
agents are homogenous in the sense that they have same
organization structure, which means all other agents are
interacted with the environment in same way.

Agent

GXS

RT

RG

RINI

(t)
E

xA
(t) xG

(t)

FIGURE 1. AN AGENT AND THE ENVIRONMENT (E) IT ROAMS

A. The environment (E)
The environment (E) serves as the task-dependent

domain on which the agents works in cooperative mode,
which usually plays three roles [37].

Firstly, it contains a structural landscape (G) of the
optimization task. The landscape paradigm is used for
search in general [8, 28]. It is defined on the
representation space (SR), which contains all potential
solutions, each is called a state (x). A quality measuring
operator (RM) is used for determine which one has better
quality between any two states in the measurable space
(SM), where M RS S⊆ . The quality measurement implies
the intention to attain the state that is better than others.

For normal problems, there is a cost function fc(x) for
each x ∈ SM. Then the quality measurement is realized by

O
MR (ax , bx) [56]: for ∀ ax , bx ∈SM, if fc(ax) ≤ fc(bx),

then its returns TRUE, which means the quality of the ax
is better than that of the bx , else it returns FLASE.

Secondly, the environment also acts as a blackboard
where agents can share their past local information [42,
55]. As for the ant [15], it can be regarded as an indirect
communication pool [37]. Here only a single declarative
element, i.e. ()t

SX ={ ()
,
t

A ix |i∈ [1, N] }, is used, where each
()

,
t

A ix is referred from the ()t
Ax of the ith agent.

Thirdly, the environment keeps a central clock that
helps synchronizing the behaviors of the system [37]. The
system is worked in cycles, where each cycle contains two
sequential clock steps: the C_RUN and the C_POST.

B. The agent
Each agent is a socially situated autonomous entity [37],

which is able to make decisions for itself, subject to the
limitations of the available information.

As a mini cognitive entity, the agent works in cognitive
loops [31], where the basic building block is the interplay
between memory and behavior [1]. As an elemental solver,
the essential behavior of the agent in the loops is guided
generate-and-test search [55] on the landscape, as
observed in many existing optimization systems [57].

As in Figure 1, basic behaviors include an initializing
part (RINI), a generating part (RG), and a testing part (RT),
which are exerted on two declarative knowledge elements,
i.e. the ()t

Ax and the ()t
Gx , which are memorized by the

agent in long-term (be valid in all following cycles) and
temporarily (be valid only in current cycle), respectively.
Moreover, all the behaviors are driven by an interpret
process similar as in a finite-state machine (FSM) [47].

The RINI only works at t=0, which constructs the
element (0)

Ax ∈SM (and hence the corresponding referring

element in the (0)
SX) based on the landscape information.

As t>0, both the RG and the RT work on the ()t
Ax and the

()t
Gx at the C_RUN step and the C_POST step, respectively.

Using two steps allows the RG of all the agents working
under same ()t

SX before the ()t
Ax is changed by the RT.

The RG generates a new state ()t
Gx ∈SM by estimating of

distribution for promising space based on two declarative
knowledge sources, i.e. the ()t

Ax , which can only be

modified by agent itself, and the ()t
SX , which is socially

available from the environment. The law of behavior is
socially biased individual learning (SBIL), which is
adopted by many species in real world [19]. The SBIL has
been suggested to be one of fast-and-frugal heuristics [22],
which [9] a) gains most of the advantages of both
individual and social learning; and b) facilitates the

emergent properties by allowing learned knowledge to be
accumulated from one generation to the next.

The RT only produces reflex behavior, which replaces
the memorized element ()t

Ax by the generated element ()t
Gx ,

according a specified criterion. There are two frequent-
used RT versions [56]: a) the direct RT (D

TR), which does

the action directly; and b) the better RT (G
TR), which does

the action only as O
MR (() (),t t

G Ax x) ≡ TRUE. It can be seen

that the RT may determine nontrivial properties of the ()t
Ax :

the ()t
Ax stores the most recently state or the best state ever

obtained as the D
TR or the G

TR is used, respectively.

C. The decomposition of behaviors
All the behaviors may be realized in various ways, and

some of them may be sophisticated. For the purpose of
understanding, reusing, and even evolving them, it is
preferred to interpret them by some elemental operators
organized by symbolic scripts. The possible organizing
forms and related operators may be numerously. However,
only simple variants may be considered. Moreover, it will
be especially beneficial to include well-studied operators,
by considering the inherent information of each behavior.

Both the RINI and the RG generate a state in the SM. For
certain landscape, its SM is not equal to the SR. Hence it is
useful to include a postprocessing step, i.e. a state-refining
operator (RSR) for refining x ∈ SR into x ∈ SM.

Then the early process step of both behaviors can focus
on generating a state x ∈ SR. For the RINI, this step is
realized by an internal state-constructing operator (RSCI).
A simple version for the RSCI is a random RSCI (R

SCIR),
which constructs a state x in the SR at random.

The RG has two additional input sources, i.e. the ()t
Ax

and the ()t
SX , which is often filtered into an intermediate

form (VGF) by a preprocessing step, i.e. an information-
filtering operator (RIF), since certain information may be
useless. Hence, its early process step contains two
sequential steps, i.e. a RIF operator and an internal state-
generating operator (RSGI), which generates a state x ∈ SR
according to the VGF. Obviously, both the RIF and the RSGI
could only be designed under a specified VGF.

For the VGF of the RG under the law of SBIL, the ()t
Ax is

always kept, normal as an incumbent state for kick-move,
and the filtering operation is only performed on the ()t

SX .
The RIF operator may be degenerated as some RSGI

operators, such as the social impact operator [6, 56] for
numerical optimization, and Inver-over operator [51] for
the TSP, etc., may use full information in the ()t

SX .
Some RSGI operators may use partial information. For

example, in the differential evolution (DE) [48, 56], only
the best one and pairs of states in the ()t

SX are used.

Especially, for X
GFV ={ ()

1
t

Px , ()
2
t

Px } where ()
1
t

Px = ()t
Ax and

()
2
t

Px is picked from ()t
SX by a state-picking operator (RSP),

then the RSGI is called as a recombination one (RSGI:X). By
taking both ()

1
t

Px and ()
2
t

Px as parents, many recombination
or crossover operators, which have been well studied in
GAs, can be taken as RSGI:X with minor modifications. For
this case, the tuple <RIF, RSGI> can be represented by the
tuple <RSP, RSGI:X>. A simple version of the RSP, called as
the R

SPR , is to pick a state from the ()t
SX at random.

D. Relations with existing systems
The mini-Swarm system can be situated in the compact

MAOS [56] with almost minimum requirement on
declarative knowledge. Similar to that of self-organizing
particle systems [47] in artificial life society, each agent
works by organized behaviors on limited private memory.

With suitable landscape, several existing algorithms [6,
48, 51] can be well situated in the mini-Swarm framework.

For the socially sharing information, it does not utilize
sophisticated external memory, as pheromone trials for the
ant [15]; for the declarative knowledge of each agent, it
does not use multiple elements, as in the particle [33].

In principle, the RG may also work under the individual-
only mode or the social-only mode, which only uses
the ()t

Ax or the ()t
SX , respectively. For the former mode, the

mini-Swarm turns into N independent solvers in parallel
running mode, as a portfolio of algorithms [23]. For the
latter mode, the mini-Swarm is almost equivalent to a
generational genetic algorithm [53] as two conditions are
satisfied: a) for the RG, a RSGI:X operator is used under

X
GFV , where both the ()

1
t

Px and the ()
2
t

Px are selected from

the ()t
SX ; and b) for the RT, the D

TR is used.

III. THE QUADRATIC KNAPSACK PROBLEM (QKP)

The QKP may be expressed as follows [3]:
1

1 1 1

1

1

max ()

subject to () 0

(,...,) {0,1} [1,]

n n n

i i ij i j
i i j i

n

i i
i

n i

f x p x p x x

g x w x c

x x x x i n

−

= = = +

=

= +∑ ∑ ∑

= − ≤∑

= ∈ ∈

(1)

where wi is weight coefficient, pi and pij are profit
coefficients, and c denotes the capacity of the knapsack.
All coefficients are non-negative integers. In order to
avoid trivial problem, it is assumed that c/wmax<1, where
wmax= 1

n
i iw=∑ . The g(x) is also called as the capacity gap.

For each x , if it satisfies the capacity constraint () 0g x ≤ ,
then it is called as feasible, or else it is called as infeasible.

As ix =1, it is said that the item i is selected. Hence, for
each x , there is an equivalent representation called as x ,
which is the set of indices for all the selected items.

The number of non-zero coefficients of the objective
function divided by n·(n+1)/2 is called as density (d) [3],
which indicates the level of interaction between items and
may have influence on the problem difficulty.

IV. IMPLEMENTATIONS FOR THE QKP

The implantation for the QKP is realized in the
following steps: a) defines the internal representation of
the QKP; b) designs suitable elemental operators for the
RINI, the RG, and the RT behaviors; and c) organizes
available operators into versions of the mini-Swarm.

A. The QKP landscape
The n-dimensional binary space for containing possible

x is a natural choice for the SR of the QKP. However, the
quality measurement is only applied on the feasible space
(SF), i.e. the set of all feasible states, which allows a
simple cost function, i.e., fc(x) = -f ()x .

B. The elemental operators
Here only two elemental operators are described, where

other operators that are not associated with specific
problem structure are introduced in previous sections.

1). The recombination RSGI operator

Since each one is a bitstring for both parents, the
uniform crossover (UX) [49] is used as the RSGI:X operator,
which is called as :

UX
SGI XR at here. It begins by including in

the offspring state all common items in both parent states,
then the remained items in both parents are then picked
with an equal probability. Compared with the intersection
operator as used in a greedy GA [32], which only includes
all common items, the UX preserves more information
contained in the parents, although it cannot always
generate a feasible offspring even as both parents are
feasible. Compared with the one-point and the two-point
crossovers, the state generated by UX has less variance on
the number of selected items related to its parent states.
Moreover, it is straightforward to define the distance
between two states as the total number of items different
from each others. The UX also generates an offspring state
with similar distance to both parent states, as in the
distance preserving crossover (DPX) [18], which may be
especially useful for escaping from local minima.

The UX has been applied on solving multidimensional
knapsack problem (MKP) by GA [11]. The difference on
using it is that here it is no combined with an immediately
mutation operator in a small mutation rate.

2). The repairing & improving RSR operator

A feature of the QKP landscape is that SM ≡ SF. The
repairing & improving RSR operator (RSR:RI) handling such
fact by combing two sequential executed operators [11]: a)
the repairing phase (RREP), which is to repair an state into
a feasible one; and b) the improving phase (RIMP), which
tries to improve the quality of a feasible state.

Concerned with the QKP, for ax∀ has g(ax)>0, it can
be rather easily to repair the ax into a state b Fx S∈ ,
where b ax x⊂ , by removing some items in the ax .

For the repairing phase, a random RREP operator
(R

REPR) is realized: for Rx S∀ ∈ , each item picked in x at
random is iterative removed until there is () 0g x ≤ .

The candidate set cx for Fx S∀ ∈ is a full collection of
items, where xi is not selected and satisfies wi+ g(x) ≤ 0.
If cx ≡ ∅ , then the x is called as a complete, or else it is
called as a incomplete. Each incomplete feasible state x
can be further improved for its ()cf x while keeping its
feasibility by adding any one of the items in its cx . Hence
the improving phase can be achieved by a construction
process, called RIMP:C, for Fx S∀ ∈ . At each iteration, the

cx is updated, and an item picked in the cx is added into
the x , this process is continued until cx ≡ ∅ .

The updating of cx will be executed many times, which
can be accelerated by establishing an intermediate array in
advance with the indices of all items sorted by their wi.

For the RIMP:C, a cost-based item-picking version is
considered. Similar to the construction phase of the
GRASP [17], each item in the cx has an incremental cost
(CINC) assigned by a cost-assigning operator (RCA), which
is associated with clues from the problem. Then the item-
picking operator (RIP) picks a item according the cost
values of all the items in the cx , where a larger cost value
means higher probability for the item to be picked.

For knapsack problems, the profit-to-weight ratio (rpw)
associated with each candidate item provides strong
correlated information. In his pioneer work, Danzig [14]
provided an elegant way of finding an exact solution for
the continuous 0-1 Knapsack version by sorting the items
according to their rpw values. Balas [2] then defined the
core problem for the 0-1 Knapsack problem, which may
focus the computational effort on a small subset of the
items, i.e. the core. Of course, only the approximate core,
which may be specified in relative exactly, can be used
since the optimal solution should be known in advance for
determining the exact core. However, the core problems
are still generally difficult to be solved [43].

For the QKP, the absolute profit (PA) for the ith item is:

, j iA i i ijP p p≠= + ∑ (2)

where ijp = ijp for i<j, and ijp = jip for i >j.

The relative profit (PR) for the ith item of a state x is:

, j xR i i ijP p p∈= + ∑ (3)

The CINC value for each item must have positive
correlation with the probability of the item belonged to a
high-quality solution. Hence for knapsack problems, it is

naturally for assigning the rpw as the CINC for each item, as
a fast-and-frugal clue could be readily available.

 Either absolute profit (PA) or relative profit (PR) can be
used for calculating the rpw values [32]. The PR has richer
information than the PA, however, the computation is

 Gmore costly since it must be re-calculated for each x .
 Here the improving phase is achieved by the RIMP C

TS A&
: ,

which can be represented by a tuple < RCA
A , RIP

TS >.

 The absolute RCA (RCA
A) is realized as: for each item i,

rpw,i = PA,i/wi is returned as its CINC value.
 The tournament-selection RIP (RIP

TS) returns the item
with the largest CINC value among totally MIN(NTS, NCXC)
items chosen in the xc at random, where NTS is tournament

size and NCXC is the cardinality of the xc . If NTS=1, then

the item is selected at random. If NTS≥NCXC, then the item
with minimal CINC value in the xc is selected.
C. The mini-Swarm optimizer

 Now an optimizer under the mini-Swarm system may
be established with specified elemental operators.

 For behaviors, the RT
G is adopted as the RT. The RINI is

realized by RSCI
R and RSR RI

R TS&
: , and the RG is organized by a

tuple < RSP
R , RSGI X

UX
: , RSR RI

R TS&
: > under the VGF

X . Here RSR RI
R TS&

:

=< RREP
R , RIMP C

TS A&
: > is reused by both the RINI and the RG.

 Then the algorithm parameters only include the number
of agent (N) and the NTS for the RIP

TS of the RIMP C
TS A&

: .

 V. RESULTS AND DISCUSSIONS

 The experiments were performed on a collection of
QKP instances provided by Billionnet and Soutif [5]
(). There are two
choices for the number of items (n), i.e. 100 and 200; and
four choices for density (d), i.e. 0.25, 0.50, 0.75, and 1.00.
For each specified n and d, there are ten instances. For the
profit coefficients (pi and pij), zero elements are specified
at random, and the non-zero elements are uniformly
distributed between [1, 100]] , the weight coefficients (wi)

are chosen between [1, 50]] at random, and the capacity
(c) is randomly selected between [50, max(50, wmax)]] .

 We have the following mini-swarm versions: a) #STD,
where NTS=2; b) #RND, where NTS=1; and c) #GRD,
where NTS=n. These versions may run under specified N

values. For the termination condition, the number of
maximum cycles (TMAX) is fixed as 500, and the system is
terminated if no further improvement occurs for 100
cycles. The mini-Swarm is coded in JAVA, and run by
Sun JVM version 1.5 on the 3.06GHz P4 processor under
Red Hat Linux 7.3. For each problem instance, 100
independent trials (NR) were performed.

0.0 0.5 1.0 1.5 2.0 2.5

0.01

0.1

R
PD

tE (s)

 #GRD
 #RND
 #STD

FIGURE 2. RESULTS BY THREE MINI-SWARM VERSIONS

TABLE 1. RESULTS BY #STD FOR 100-ITEM QKP INSTANCES
Instance F* NS RPD TRUN tE (s)

r_100_025_01 18558 100 0 56.12 0.430
r_100_025_02 56525 100 0 12.86 0.170
r_100_025_03 3752 100 0 24.89 0.190
r_100_025_04 50382 100 0 25.12 0.920
r_100_025_05 61494 100 0 0.06 0.064
r_100_025_06 36360 100 0 45.24 0.415
r_100_025_07 14657 100 0 27.36 0.233
r_100_025_08 20452 100 0 27.06 0.313
r_100_025_09 35438 39 0.117 58.07 0.801
r_100_025_10 24930 100 0 45.10 0.890
r_100_050_01 83742 100 0 24.93 0.273
r_100_050_02 104856 54 0.028 19.69 0.224
r_100_050_03 34006 88 0.008 48.47 0.366
r_100_050_04 105996 100 0 8.82 0.137
r_100_050_05 56464 100 0 30.06 0.669
r_100_050_06 16083 100 0 30.92 0.263
r_100_050_07 52819 100 0 36.36 0.417
r_100_050_08 54246 100 0 37.69 0.416
r_100_050_09 68974 100 0 34.99 0.950
r_100_050_10 88634 100 0 35.48 0.345
r_100_075_01 189137 100 0 0 0.090
r_100_075_02 95074 75 0.014 72.32 0.749
r_100_075_03 62098 100 0 30.89 0.349
r_100_075_04 72245 100 0 42.40 0.522
r_100_075_05 27616 100 0 23.23 0.210
r_100_075_06 145273 100 0 13.64 0.555
r_100_075_07 110979 100 0 34.52 0.341
r_100_075_08 19570 100 0 25.67 0.192
r_100_075_09 104341 100 0 33.81 0.417
r_100_075_10 143740 100 0 17.79 0.209
r_100_100_01 81978 100 0 28.63 0.271
r_100_100_02 190424 100 0 20.59 0.230
r_100_100_03 225434 100 0 2.41 0.190
r_100_100_04 63028 100 0 32.70 0.400
r_100_100_05 230076 100 0 3.23 0.106
r_100_100_06 74358 100 0 29.66 0.330
r_100_100_07 10330 100 0 11.23 0.120
r_100_100_08 62582 100 0 27.49 0.257
r_100_100_09 232754 100 0 5.55 0.109
r_100_100_10 193262 100 0 18.10 0.240

URL: http://cedric.cnam.fr/~soutif/QKP/

TABLE 2. RESULTS BY #STD FOR 200-ITEM QKP INSTANCES
Instance F* NS RPD TRUN tE (s)

r_200_025_01 204441 100 0 44.59 1.221
r_200_025_02 239573 100 0 14.94 0.499
r_200_025_03 245463 98 6.8E-4 14.72 0.536
r_200_025_04 222361 100 0 23.69 0.726
r_200_025_05 187324 100 0 65.64 1.571
r_200_025_06 80351 28 0.054 136.89 2.781
r_200_025_07 59036 77 0.036 136.10 2.583
r_200_025_08 149433 100 0 99.37 2.038
r_200_025_09 49366 100 0 87.78 1.405
r_200_025_10 48459 100 0 67.73 0.940
r_200_050_01 372097 100 0 45.57 1.292
r_200_050_02 211130 26 0.005 106.65 1.825
r_200_050_03 227185 100 0 88.98 1.606
r_200_050_04 228572 100 0 62.89 4.801
r_200_050_05 479651 100 0 12.12 0.501
r_200_050_06 426777 100 0 39.34 1.053
r_200_050_07 220890 100 0 93.90 2.066
r_200_050_08 317952 100 0 72.20 1.726
r_200_050_09 104936 100 0 77.22 1.097
r_200_050_10 284751 98 4.2E-5 94.87 2.079
r_200_075_01 442894 16 0.025 129.64 3.339
r_200_075_02 286643 95 5.2E-5 129.06 2.797
r_200_075_03 61924 100 0 42.74 0.656
r_200_075_04 128351 100 0 63.19 1.232
r_200_075_05 137885 100 0 62.03 1.127
r_200_075_06 229631 100 0 79.66 1.661
r_200_075_07 269887 100 0 86.67 6.291
r_200_075_08 600858 98 1.5E-4 82.42 1.966
r_200_075_09 516771 100 0 64.34 1.515
r_200_075_10 142694 100 0 60.94 1.072
r_200_100_01 937149 100 0 16.62 0.574
r_200_100_02 303058 100 0 64.75 1.179
r_200_100_03 29367 100 0 27.43 0.301
r_200_100_04 100838 100 0 43.22 0.543
r_200_100_05 786635 100 0 66.13 2.043
r_200_100_06 41171 100 0 25.49 0.311
r_200_100_07 701094 100 0 77.89 1.732
r_200_100_08 782443 100 0 49.84 1.258
r_200_100_09 628992 100 0 105.31 2.277
r_200_100_10 378442 100 0 82.26 1.757

Figure 2 summarizes the average results of all the QKP

instances for their relative percentage deviation (RPD)
versus the average execution time (tE) in seconds, by
#STD, #RND, and #GRD under N=50, 100, 300, and 500.
It can be seems that the #STD can achieve dominant
results by comparing to that of both the #RND and the
#GRD, and the #RND can achieve dominant results by
comparing to that of the #GRD. Hence, the profit-to-
weight ratio values indeed carry positive clue, however, to
use them in greedy way is normally not a good choice.

Table 1 and 2 lists the summary of the optimum values
(F*) and the performance indices, including the number of
successful trials for achieving the optimum (NS), the RPD,
the average running cycles (TRUN), and the tE (in seconds),
by the #STD under N=500 for all 100- and 200-item QKP
instances, respectively. It can be seen that about 85% of
the instances can be solved in 100% success ratio (NS/NR).

Table 3 compares the average time (in seconds) for
solving exactly by a depth-first-search branch-and-bound
algorithm (B&B) [5] with an relatively original variable
fixing procedure and both the average execution time (in
seconds) and the success ratio (NS/NR) of the #STD mini-
Swarm version under N=500, which can be summarized
from Table 1 and 2, for the QKP instances under different
n and d. The B&B algorithm has outperformed the
performance two other algorithms [10, 24] that are able to
handle the QKP instances of 100 items or more. This
B&B algorithm was implemented in C language and the
tests were run on a 300MHz Pentium II processor. For the
B&B algorithm, it may be failed for solving the 200-item
instances with large density values. For the mini-Swarm
version, it can solve with much less computation time than
the B&B while always obtain the success ratio larger than
90% for all the instances in different n and d. Moreover,
the mini-Swarm version is especially efficient for solving
the instances with d=1.00, which may due to a larger
variation between the profit and weight coefficients for the
knapsack problems with larger density [44].

TABLE 3. RESULTS BY B&B [5] AND #STD UNDER N=500
 n=100 n=200

d B&B #STD(N=500) B&B #STD(N=500)
0.25 117 0.442(93.9%) 3602 1.430(90.3%)
0.50 82 0.406(94.2%) 1690 1.805(92.4%)
0.75 120 0.363(97.5%) - 2.165(90.9%)
1.00 190 0.225(100%) - 1.197(100%)

“-” means that at least one instance could not be solved within
30000 seconds [5].

TABLE 4. RESULTS BY GGA [32] AND #STD UNDER

DIFFERENT N VALUES FOR QKP INSTANCES (n=100, d=0.25)
 GGA N=100 N=300 N=500

RPD 0.034 0.035 0.016 0.012
NS/NR 89.2% 84.1% 91.3% 93.9%
tE (s) 1.144 0.090 0.310 0.442

TABLE 5. RESULTS BY GGA [32] AND #STD UNDER

DIFFERENT N VALUES FOR QKP INSTANCES (n=200, d=1.00)
 GGA N=100 N=300 N=500

RPD 0.001 0.014 2.2E-5 0
NS/NR 91.2% 92.3% 99.9% 100%
tE (s) 15.78 0.302 0.716 1.197

Table 4 and 5 summaries three performance indices,

including the RPD, the success ratio (NS/NR), and the tE
(in seconds), for the results by the greedy GA (GGA) [32],
and the #STD under N=100, 300, and 500, on the QKP
instances as (n=100, d=0.25) and (n=200, d=1.00),
respectively. The GGA has achieved best performance
while comparing to two greedy heuristics and a naive GA
[32]. Moreover, it is generational [53] and 1-elitist, while
applies crossover and mutation independently in fixed
probability on tournament selected individuals. It was
implemented in C++ and executed on the 2.53GHz P4
processor under the Red Hat Linux 9.0. Due to the

restriction on information diffusion by the private memory
of each agent, the mini-Swarm has more capability for
exploring in parallel, and it is not so necessarily to
maintain the diversity of socially sharing information by
explicit mutations. As N=100, the #STD version can
obtain comparable performance with the GGA, while the
#STD versions under both N=300 and N=500 can achieve
dominant results on all three performance indices by
considering the minor difference between the CPU speed.

VI. CONCLUSIONS

The QKP is a hard computational problem with a
variety of applications. Due to its NP-hardness in strong
sense, the studies on heuristic methods arise from practical
interest, especially for the large sized QKP.

Swarm algorithms may be considered as intelligent
heuristic methods, which can be applied to a variety of
optimization problems. In the mini-Swarm framework,
each agent searches on the landscape according to guided
generate-and-test behavior under the law of socially-
biased individual learning, which is based on extremely
limited declarative knowledge and interacts with others
through the socially sharing knowledge referred from all
agents. The formal decomposition of behavioral rules
allows the agents utilizing well-studied operators. The
relations with some existing methods are then discussed.

The extensive experimental results by the mini-Swarm
versions on a collection of the QKP instances show its
efficiency as comparing to some existing algorithms.

Further studies may focus on applying the mini-Swarm
on various optimization problems, including dynamic [36],
multi-objective [13], or multi-constraint [11] cases, etc.,
and investigating various operators suitable for those
problems, which may also be used by some autonomous
agents and multiagent systems. Moreover, it is also
interesting to study characteristics of swarm algorithms
under various network topologies [40].

REFERENCES

[1] J. R. Anderson, Learning and Memory: an Integrated
Approach. New York: Wiley, 1995.

[2] E. Balas and E. Zemel, "An algorithm for large zero-one
knapsack problems," Operations Research, vol. 28, pp. 1130-
1154, 1980.

[3] A. Billionnet and F. Calmels, "Linear programming for the 0-1
quadratic knapsack problem," European Journal of Operational
Research, vol. 92, pp. 310-325, 1996.

[4] A. Billionnet, A. Faye, and É. Soutif, "A new upper bound for
the 0-1 quadratic knapsack problem," European Journal of
Operational Research, vol. 112, pp. 664-672, 1999.

[5] A. Billionnet and É. Soutif, "An exact method based on
Lagrangian decomposition for the 0-1 quadratic knapsack
problem," European Journal of Operational Research, vol. 157,
pp. 565-575, 2004.

[6] S. I. Birbil, S.-C. Fang, and R.-L. Sheu, "On the convergence
of a population-based global optimization algorithm," Journal of
Global Optimization, vol. 30, pp. 301-318, 2004.

[7] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm
Intelligence: From Natural to Artificial Systems. UK: Oxford
University Press, 1999.

[8] Y. Borenstein and R. Poli, "Information landscapes," Genetic
and Evolutionary Computation Conference, Washington DC,
USA, pp. 1515-1522, 2005.

[9] R. Boyd and P. J. Richerson, The Origin and Evolution of
Cultures. New York: Oxford University Press, 2005.

[10] A. Caprara, D. Pisinger, and P. Toth, "Exact solution of the
Quadratic Knapsack Problem," INFORMS Journal on
Computing, vol. 11, pp. 125-137, 1999.

[11] P. C. Chu and J. E. Beasley, "A genetic algorithm for the
multidimensional knapsack problem," Journal of Heuristics, vol.
4, pp. 63-86, 1998.

[12] M. Clerc, Particle Swarm Optimization. London: ISTE
Publishing Company, 2006.

[13] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga,
"Handling multiple objectives with particle swarm optimization,"
IEEE Transactions on Evolutionary Computation, vol. 8, pp.
256-279, 2004.

[14] G. B. Dantzig, "Discrete-variable extremum problems,"
Operations Research, vol. 5, pp. 266-277, 1957.

[15] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant system:
optimization by a colony of cooperating agents," IEEE Trans.
Systems, Man, and Cybernetics - Part B, vol. 26, pp. 1-13, 1996.

[16] A. P. Engelbrecht, Fundamentals of Computational Swarm
Intelligence: Wiley & Sons, 2005.

[17] T. A. Feo and M. G. C. Resende, "Greedy randomized
adaptive search procedures," Journal of Global Optimization,
vol. 6, pp. 109-133, 1995.

[18] B. Freisleben and P. Merz, "New genetic local search
operators for the traveling salesman problem," International
Conference on Parallel Problem Solving from Nature, Berlin,
Germany, pp. 890 - 899, 1996.

[19] B. G. Galef and K. N. Laland, "Social learning in animals:
Empirical studies and theoretical models," Bioscience, vol. 55,
pp. 489-499, 2005.

[20] G. Gallo, P. L. Hammer, and B. Simeone, "Quadratic
knapsack problems," Mathematical Programming Study, vol. 12,
pp. 132-149, 1980.

[21] M. R. Garey and D. S. Johnson, ""Strong" NP-
completeness results: motivation, examples, and implications,"
Journal of the ACM, vol. 25, pp. 499-508, 1978.

[22] G. Gigerenzer and D. G. Goldstein, "Reasoning the fast and
frugal way: models of bounded rationality," Psychological
Review, vol. 103, pp. 650-669, 1996.

[23] C. P. Gomes and B. Selman, "Algorithm portfolio design:
theory vs. practice," Conference On Uncertainty in Artificial
Intelligence, New Providence, RI, pp. 190-197, 1997.

[24] P. L. Hammer and D. J. Rader, "Efficient methods for
solving quadratic 0-1 knapsack problems," INFOR, vol. 35, pp.
170-182, 1997.

[25] S. He, Q. H. Wu, and J. R. Saunders, "A novel group
search optimizer inspired by animal behavioural ecology," IEEE
Congress on Evolutionary Computation, Vancouver, BC,
Canada, pp. 1272-1278, 2006.

[26] C. Helmberg, F. Rendl, and R. Weismantel, "A
semidefinite programming approach to the quadratic knapsack
problem," Journal of Combinatorial Optimization, vol. 4, pp.
197-215, 2000.

[27] J. H. Holland, Adaptation in natural and artificial systems.
Ann Arbor: University of Michigan Press, 1975.

[28] W. Hordijk, "A measure of landscapes," Evolutionary
Computation, vol. 4, pp. 335-360, 1996.

[29] Z. Hua, B. Zhang, and L. Liang, "An approximate dynamic
programming approach to convex quadratic knapsack problems,"
Computers & Operations Research, vol. 33, pp. 660-673, 2006.

[30] O. H. Ibarra and C. E. Kim, "Fast approximation
algorithms for the knapsack and sum of subset problems,"
Journal of the ACM, vol. 22, pp. 463-468, 1975.

[31] A. M. Isen, T. E. Shalker, M. Clark, and L. Karp, "Affect,
accessibility of material in memory, and behavior: a cognitive
loop?" Journal of Personality and Social Psychology, vol. 36,
pp. 1-12, 1978.

[32] B. A. Julstrom, "Greedy, genetic, and greedy genetic
algorithms for the quadratic knapsack problem," Genetic and
Evolutionary Computation Conference, Washington DC, USA,
pp. 607-614, 2005.

[33] J. Kennedy and R. C. Eberhart, "Particle swarm
optimization," IEEE International Conference on Neural
Networks, Perth, Australia, pp. 1942-1948, 1995.

[34] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm
Intelligence. San Mateo, CA: Morgan Kaufmann, 2001.

[35] J. E. Laird, A. Newell, and P. S. Rosenbloom, "SOAR - an
architecture for general intelligence," Artificial Intelligence, vol.
33, pp. 1-64, 1987.

[36] X. Li, J. Branke, and T. Blackwell, "Particle swarm with
speciation and adaptation in a dynamic environment," Genetic
and Evolutionary Computation Conference, Seattle, WA, USA,
pp. 51-58, 2006.

[37] J. Liu, X.-L. Jin, and K. C. Tsui, Autonomy Oriented
Computing (AOC): From Problem Solving to Complex Systems
Modeling: Kluwer Academic Publishers, 2005.

[38] S. Martello and P. Toth, Knapsack Problems: Algorithms
and Computer Implementations. New York, USA: John Wiley &
Sons, 1990.

[39] S. Martello, D. Pisinger, and P. Toth, "New trends in exact
algorithms for the 0-1 knapsack problem," European Journal of
Operational Research, vol. 123, pp. 325-332, 2000.

[40] R. Mendes, J. Kennedy, and J. Neves, "The fully informed
particle swarm: Simpler, maybe better," IEEE Transactions on
Evolutionary Computation, vol. 8, pp. 204-210, 2004.

[41] P. Michelon and L. Veilleux, "Lagrangean methods for the
0-1 quadratic knapsack problem," European Journal of
Operational Research, vol. 92, pp. 326-341, 1996.

[42] J. K. Olick and J. Robbins, "Social memory studies: From
"collective memory" to the historical sociology of mnemonic
practices," Annual Review of Sociology, vol. 24, pp. 105-140,
1998.

[43] D. Pisinger, "Core problems in Knapsack algorithms,"
Operations Research, vol. 47, pp. 570-575, 1999.

[44] D. Pisinger, "Where are the hard knapsack problems?"
Computers and Operations Research, vol. 32, pp. 2271-2282,
2005.

[45] D. Pisinger, A. Bo Rasmussen, and R. Sandvik, "Solution
of large-sized quadratic knapsack problems through aggressive
reduction," INFORMS Journal on Computing, vol. 19, 2007.

[46] D. J. Rader and G. J. Woeginger, "The quadratic 0-1
knapsack problem with series-parallel support," Operations
Research Letters, vol. 30, pp. 159-166, 2002.

[47] A. Rodríguez and J. A. Reggia, "Extending self-organizing
particle systems to problem solving," Artificial Life, vol. 10, pp.
379-395, 2004.

[48] R. Storn and K. V. Price, "Differential evolution - a simple
and efficient heuristic for global optimization over continuous
spaces," J. Global Optimization, vol. 11, pp. 341-359, 1997.

[49] G. Syswerda, "Uniform crossover in genetic algorithms,"
International Conference on Genetic Algorithms, San Mateo,
CA, pp. 2-9, 1989.

[50] N. A. Taatgen, Learning without limits: from problem
solving towards a unified theory of learning, Ph.D. thesis,
University of Groningen, the Netherlands, 1999.

[51] G. Tao and Z. Michalewicz, "Inver-over operator for the
TSP," International Conference on Parallel Problem Solving
from Nature, Amsterdam, the Netherlands, pp. 803-812, 1998.

[52] D. Weyns and T. Holvoet, "On the role of environments in
multiagent systems," Informatica, vol. 29, pp. 409-421, 2005.

[53] D. Whitley, "An overview of evolutionary algorithms:
practical issues and common pitfalls," Information and Software
Technology, vol. 43, pp. 817-831, 2001.

[54] X.-F. Xie and W.-J. Zhang, "Solving engineering design
problems by social cognitive optimization," Genetic and
Evolutionary Computation Conference, Washington, USA, pp.
261-262, 2004.

[55] X.-F. Xie and W.-J. Zhang, "SWAF: Swarm algorithm
framework for numerical optimization," Genetic and
Evolutionary Computation Conference, Seattle, Washington,
USA, pp. 238-250, 2004.

[56] X.-F. Xie and J. Liu, "A compact multiagent system based
on autonomy oriented computing," IEEE/WIC/ACM
International Conference on Intelligent Agent Technology,
Compiègne, France, pp. 38-44, 2005.

[57] X. Yao, "Global optimisation by evolutionary algorithms,"
International Symposium on Parallel Algorithm/Architecture
Synthesis, Aizu-Wakamatsu, Japan, pp. 282-291, 1997.

