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Abstract- The 0-1 quadratic knapsack problem (QKP) is a 
hard computational problem, which is a generalization of the 
knapsack problem (KP). In this paper, a mini-Swarm system 
is presented. Each agent, realized with minor declarative 
knowledge and simple behavioral rules, searches on a 
structural landscape of the problem through the guided 
generate-and-test behavior under the law of socially biased 
individual learning, and cooperates with others by indirect 
interactions. The formal decomposition of behaviors allows 
understanding and reusing elemental operators, while utilizes 
the heuristic information on the landscape. The results on a 
collection of the QKP instances by mini-Swarm versions are 
compared with that of both a branch-and-bound algorithm 
and a greedy genetic algorithm, which show its effectiveness. 

I.  INTRO DUCTION 

The 0-1 quadratic knapsack problem (QKP) was 
introduced by Gallo et al. [20], which consists in choosing 
elements from n items for maximizing a quadratic profit 
objective function subject to a linear capacity constraint. 
The QKP is a generalization of the 0-1 knapsack problem 
(KP) [38], by restricting all the quadratic coefficients to 
zero. The knapsack problems [38] have been intensively 
studied due to both its theoretical interest and its wide 
practical applicability. Due to its generality, the QKP has 
more practically applications [3, 20], moreover, several 
graph problems can be formulated as the QKP [4, 45].  

The KP is NP-hard, although it can be solved exactly in 
pseudo-polynomial time through dynamic programming 
based on Bellman recursion [21]. As a generalized version, 
the QKP is much harder than the KP [10, 45], where the 
graph structure associated with coefficients of objective 
function plays a important role in its solution [46].  

Due to the NP-hardness in strong sense, the research 
efforts on solving the QKP may focus on exact methods, 
approximate algorithms and heuristic methods.  

Classical exact methods [39] for solving the QKP are 
the branch and bound (B&B) algorithms, where numerous 
upper bounds have been obtained, by using techniques 
such as derivation of upper planes [20], Lagrangian 
relaxation [24], reformulation [10], linearization [3], 
Lagrangian decomposition [4, 5, 41], semidefinite 
relaxation [26], and reduction strategies [24, 45], etc.  

The studies on approximate algorithms, which seek 
guaranteed polynomial-time performance on approximate 
solution, were only limited on some special cases of the 
QKP, such as the classical KP [30], and the QKP where 
the underlying graph is edge series-parallel [46], etc. 

The heuristic methods arise from practical interest, 
which try to find good solution in high probability with 
acceptable computational efforts by considering certain 
imprecise knowledge on the structure of the problem. The 
linearization and exchange (LEX) heuristic [24] uses the 
best linear L2-approximation to build an associated linear 
KP and use it for determining items in a greedy way to 
form a good initial solution, which is then improved by an 
exchange method between certain items. Hua et al. [29] 
studied on the convex QKP by an approximate dynamic 
programming approach. Julstrom [32] also illustrated the 
capability of several heuristics, including greedy, genetic 
and greedy genetic algorithms on the QKP.  

Swarm algorithms [7, 16, 34] address on tackling a 
specified optimization task by multiple interacting agents, 
where each agent works under bounded rationality by 
executing simple procedural rules according to available 
heuristic information in iterative cycles. Compared with 
the individuals in genetic algorithms (GAs) [27], the 
agents also utilize certain form of socially sharing 
information for achieving emergent collective behavior, 
but they work in learning paradigm and are not subjected 
to the “survival of the fittest” principle. Some examples 
are ant colony optimization (ACO) [15], particle swarm 
optimization (PSO) [12, 33], and others  [25, 54], etc.  

The compact multiagent optimization system (MAOS) 
[56] based on autonomy-oriented computing [37] has 
been a framework for situating certain algorithms [6, 33, 
48]. Similar to the particle [33], each agent [56] in the 
MAOS has a moderate problem solving capability with 
two basic features: a) addresses on possessing of the long-
term declarative memory [1] in limited capacity, which is 
modified reactively by itself only, instead of operating as 
sophisticated as in cognitive architectures [1, 35, 50]; and 
b) achieves complex problem solving by simple guided 
generate-and-test behavior [55, 57] under the law of 
socially biased individual learning (SBIL) [9, 19], a fast-
and-frugal heuristic [22] under bounded rationality 
adopted by many species in the real world. 

In this paper, a mini-Swarm system for solving the QKP 
is presented. It is realized in a simplified way from the 
MAOS [56], while keeps both of its basic features. 
Specially, each agent searches on a structural landscape of 
the problem based on extremely limited declarative 
knowledge, while the socially sharing information is 
achieved by referring from all agents. Moreover, the 
formal decomposition of behaviors is addressed explicitly, 
which allows agents adopting some well-studied operators. 
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The remainder of the paper is organized as follows. In 
Section II, the details of the mini-Swarm system are 
presented. Then in Section III, the QKP itself is 
introduced. In Section IV, the implementation of a mini-
Swarm optimizer for the QKP is described. In Section V, 
the extensive experimental results by the mini-Swarm, 
using an online collection of the QKP instances, are 
compared with those of some existing algorithms [5, 32]. 
Finally, this paper is concluded in the Section VI. 

II.  THE MINI-SWARM SYSTEM 

The mini-Swarm system consists of a society of N 
agents, which cooperate in a socially sharing environment 
(E) [52] for realizing the common intention of finding 
high-quality solution for an optimization task.  

Moreover, the system runs in iterative cycles. For a run, 
the number of running cycles is TRUN, which is determined 
by specified termination conditions. At t=0, the system is 
initialized. The system can be analyzed in each cycle by 
executing as a Markov chain process, where the system 
behavior at the tth ( [1, ]RUNt T∈ ) cycle only depends on 
the its long-term memorized status at the (t-1)th cycle.  

Figure 1 shows one of the agents and the environment it 
roams. Each agent has a limited long-term declarative 
memory manipulated by itself only and is communicated 
with others by indirect interactions, which are implicit 
implemented through the environment. Moreover, the 
agents are homogenous in the sense that they have same 
organization structure, which means all other agents are 
interacted with the environment in same way. 
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FIGURE 1. AN AGENT AND THE ENVIRONMENT (E) IT ROAMS 

A. The environment (E) 
The environment (E) serves as the task-dependent 

domain on which the agents works in cooperative mode, 
which usually plays three roles [37]. 

Firstly, it contains a structural landscape (G) of the 
optimization task. The landscape paradigm is used for 
search in general [8, 28]. It is defined on the 
representation space (SR), which contains all potential 
solutions, each is called a state ( x ). A quality measuring 
operator (RM) is used for determine which one has better 
quality between any two states in the measurable space 
(SM), where M RS S⊆ . The quality measurement implies 
the intention to attain the state that is better than others. 

For normal problems, there is a cost function fc( x ) for 
each x ∈ SM. Then the quality measurement is realized by 

O
MR ( ax , bx ) [56]: for ∀ ax , bx ∈SM, if fc( ax ) ≤ fc( bx ), 

then its returns TRUE, which means the quality of the ax  
is better than that of the bx , else it returns FLASE. 

Secondly, the environment also acts as a blackboard 
where agents can share their past local information [42, 
55]. As for the ant [15], it can be regarded as an indirect 
communication pool [37]. Here only a single declarative 
element, i.e. ( )t

SX ={ ( )
,
t

A ix |i∈ [1, N] }, is used, where each 
( )

,
t

A ix  is referred from the ( )t
Ax of the ith agent.  

Thirdly, the environment keeps a central clock that 
helps synchronizing the behaviors of the system [37]. The 
system is worked in cycles, where each cycle contains two 
sequential clock steps: the C_RUN and the C_POST.  

B. The agent 
Each agent is a socially situated autonomous entity [37], 

which is able to make decisions for itself, subject to the 
limitations of the available information.  

As a mini cognitive entity, the agent works in cognitive 
loops [31], where the basic building block is the interplay 
between memory and behavior [1]. As an elemental solver, 
the essential behavior of the agent in the loops is guided 
generate-and-test search [55] on the landscape, as 
observed in many existing optimization systems [57].  

As in Figure 1, basic behaviors include an initializing 
part (RINI), a generating part (RG), and a testing part (RT), 
which are exerted on two declarative knowledge elements, 
i.e. the ( )t

Ax and the ( )t
Gx , which are memorized by the 

agent in long-term (be valid in all following cycles) and 
temporarily (be valid only in current cycle), respectively. 
Moreover, all the behaviors are driven by an interpret 
process similar as in a finite-state machine (FSM) [47]. 

The RINI only works at t=0, which constructs the 
element (0)

Ax ∈SM (and hence the corresponding referring 

element in the (0)
SX ) based on the landscape information.  

As t>0, both the RG and the RT work on the ( )t
Ax and the 

( )t
Gx at the C_RUN step and the C_POST step, respectively. 

Using two steps allows the RG of all the agents working 
under same ( )t

SX  before the ( )t
Ax  is changed by the RT. 

The RG generates a new state ( )t
Gx ∈SM by estimating of 

distribution for promising space based on two declarative 
knowledge sources, i.e. the ( )t

Ax , which can only be 

modified by agent itself, and the ( )t
SX , which is socially 

available from the environment. The law of behavior is 
socially biased individual learning (SBIL), which is 
adopted by many species in real world [19]. The SBIL has 
been suggested to be one of fast-and-frugal heuristics [22], 
which [9] a) gains most of the advantages of both 
individual and social learning; and b) facilitates the 



emergent properties by allowing learned knowledge to be 
accumulated from one generation to the next.  

The RT only produces reflex behavior, which replaces 
the memorized element ( )t

Ax  by the generated element ( )t
Gx , 

according a specified criterion. There are two frequent-
used RT versions [56]: a) the direct RT ( D

TR ), which does 

the action directly; and b) the better RT ( G
TR ), which does 

the action only as O
MR ( ( ) ( ),t t

G Ax x ) ≡ TRUE. It can be seen 

that the RT may determine nontrivial properties of the ( )t
Ax : 

the ( )t
Ax  stores the most recently state or the best state ever 

obtained as the D
TR  or the G

TR is used, respectively. 

C. The decomposition of behaviors 
All the behaviors may be realized in various ways, and 

some of them may be sophisticated. For the purpose of 
understanding, reusing, and even evolving them, it is 
preferred to interpret them by some elemental operators 
organized by symbolic scripts. The possible organizing 
forms and related operators may be numerously. However, 
only simple variants may be considered. Moreover, it will 
be especially beneficial to include well-studied operators, 
by considering the inherent information of each behavior. 

Both the RINI and the RG generate a state in the SM. For 
certain landscape, its SM is not equal to the SR. Hence it is 
useful to include a postprocessing step, i.e. a state-refining 
operator (RSR) for refining x ∈ SR into x ∈ SM.  

Then the early process step of both behaviors can focus 
on generating a state x ∈ SR. For the RINI, this step is 
realized by an internal state-constructing operator (RSCI). 
A simple version for the RSCI is a random RSCI ( R

SCIR ), 
which constructs a state x  in the SR at random. 

The RG has two additional input sources, i.e. the ( )t
Ax  

and the ( )t
SX , which is often filtered into an intermediate 

form (VGF) by a preprocessing step, i.e. an information-
filtering operator (RIF), since certain information may be 
useless. Hence, its early process step contains two 
sequential steps, i.e. a RIF operator and an internal state-
generating operator (RSGI), which generates a state x ∈ SR 
according to the VGF. Obviously, both the RIF and the RSGI 
could only be designed under a specified VGF.  

For the VGF of the RG under the law of SBIL, the ( )t
Ax  is 

always kept, normal as an incumbent state for kick-move, 
and the filtering operation is only performed on the ( )t

SX .   
The RIF operator may be degenerated as some RSGI 

operators, such as the social impact operator [6, 56] for 
numerical optimization, and Inver-over operator [51] for 
the TSP, etc., may use full information in the ( )t

SX .  
Some RSGI operators may use partial information. For 

example, in the differential evolution (DE) [48, 56], only 
the best one and pairs of states in the ( )t

SX  are used.  

Especially, for X
GFV ={ ( )

1
t

Px , ( )
2
t

Px } where ( )
1
t

Px = ( )t
Ax  and 

( )
2
t

Px  is picked from ( )t
SX  by a state-picking operator (RSP), 

then the RSGI is called as a recombination one (RSGI:X). By 
taking both ( )

1
t

Px  and ( )
2
t

Px  as parents, many recombination 
or crossover operators, which have been well studied in 
GAs, can be taken as RSGI:X with minor modifications. For 
this case, the tuple <RIF, RSGI> can be represented by the 
tuple <RSP, RSGI:X>. A simple version of the RSP, called as 
the R

SPR , is to pick a state from the ( )t
SX  at random. 

D. Relations with existing systems  
The mini-Swarm system can be situated in the compact 

MAOS [56] with almost minimum requirement on 
declarative knowledge. Similar to that of self-organizing 
particle systems [47] in artificial life society, each agent 
works by organized behaviors on limited private memory.  

With suitable landscape, several existing algorithms [6, 
48, 51] can be well situated in the mini-Swarm framework.  

For the socially sharing information, it does not utilize 
sophisticated external memory, as pheromone trials for the 
ant [15]; for the declarative knowledge of each agent,  it 
does not use multiple elements, as in the particle [33]. 

In principle, the RG may also work under the individual-
only mode or the social-only mode, which only uses 
the ( )t

Ax  or the ( )t
SX , respectively. For the former mode, the 

mini-Swarm turns into N independent solvers in parallel 
running mode, as a portfolio of algorithms [23]. For the 
latter mode, the mini-Swarm is almost equivalent to a 
generational genetic algorithm [53] as two conditions are 
satisfied: a) for the RG, a RSGI:X operator is used under 

X
GFV , where both the ( )

1
t

Px  and the ( )
2
t

Px  are selected from 

the ( )t
SX ; and b) for the RT, the D

TR  is used. 

III.  THE QUADRATIC KNAPSACK PROBLEM (QKP) 

The QKP may be expressed as follows [3]: 
1

1 1 1

1

1

max ( )

subject to   ( ) 0

( ,..., )  {0,1}   [1, ]

n n n

i i ij i j
i i j i

n

i i
i

n i

f x p x p x x

g x w x c

x x x x i n

−

= = = +

=

= +∑ ∑ ∑

= − ≤∑

= ∈ ∈

 

(1)

where wi is weight coefficient, pi and pij are profit 
coefficients, and c denotes the capacity of the knapsack. 
All coefficients are non-negative integers. In order to 
avoid trivial problem, it is assumed that c/wmax<1, where 
wmax= 1

n
i iw=∑ . The g( x ) is also called as the capacity gap. 

For each x , if it satisfies the capacity constraint ( ) 0g x ≤ , 
then it is called as feasible, or else it is called as infeasible. 

As ix =1, it is said that the item i is selected. Hence, for 
each x , there is an equivalent representation called as x ,  
which is the set of indices for all the selected items.  



The number of non-zero coefficients of the objective 
function divided by n·(n+1)/2 is called as density (d) [3], 
which indicates the level of interaction between items and 
may have influence on the problem difficulty.  

IV.  IMPLEMENTATIONS FOR THE QKP 

The implantation for the QKP is realized in the 
following steps: a) defines the internal representation of 
the QKP; b) designs suitable elemental operators for the 
RINI, the RG, and the RT behaviors; and c) organizes 
available operators into versions of the mini-Swarm.  

A. The QKP landscape 
The n-dimensional binary space for containing possible 

x  is a natural choice for the SR of the QKP. However, the 
quality measurement is only applied on the feasible space 
(SF), i.e. the set of all feasible states, which allows a 
simple cost function, i.e., fc( x ) = -f ( )x . 

B. The elemental operators 
Here only two elemental operators are described, where 

other operators that are not associated with specific 
problem structure are introduced in previous sections.  

 
1). The recombination RSGI operator 

Since each one is a bitstring for both parents, the 
uniform crossover (UX) [49] is used as the RSGI:X operator, 
which is called as :

UX
SGI XR at here. It begins by including in 

the offspring state all common items in both parent states, 
then the remained items in both parents are then picked 
with an equal probability. Compared with the intersection 
operator as used in a greedy GA [32], which only includes 
all common items, the UX preserves more information 
contained in the parents, although it cannot always 
generate a feasible offspring even as both parents are 
feasible. Compared with the one-point and the two-point 
crossovers, the state generated by UX has less variance on 
the number of selected items related to its parent states. 
Moreover, it is straightforward to define the distance 
between two states as the total number of items different 
from each others. The UX also generates an offspring state 
with similar distance to both parent states, as in the 
distance preserving crossover (DPX) [18], which may be 
especially useful for escaping from local minima.  

The UX has been applied on solving multidimensional 
knapsack problem (MKP) by GA [11]. The difference on 
using it is that here it is no combined with an immediately 
mutation operator in a small mutation rate. 

 
2). The repairing & improving RSR operator 

A feature of the QKP landscape is that SM ≡ SF. The 
repairing & improving RSR operator (RSR:RI) handling such 
fact by combing two sequential executed operators [11]: a) 
the repairing phase (RREP), which is to repair an state into 
a feasible one; and b) the improving phase (RIMP), which 
tries to improve the quality of a feasible state.  

Concerned with the QKP, for ax∀  has g( ax )>0, it can 
be rather easily to repair the ax  into a state b Fx S∈ , 
where b ax x⊂ , by removing some items in the ax .  

For the repairing phase, a random RREP operator   
(  R

REPR ) is realized: for Rx S∀ ∈ , each item picked in x  at 
random is iterative removed until there is ( ) 0g x ≤ . 

The candidate set cx for Fx S∀ ∈  is a full collection of 
items, where xi is not selected and satisfies wi+ g( x ) ≤ 0. 
If cx ≡ ∅ , then the x  is called as a complete, or else it is 
called as a incomplete. Each incomplete feasible state x  
can be further improved for its ( )cf x while keeping its 
feasibility by adding any one of the items in its cx . Hence 
the improving phase can be achieved by a construction 
process, called RIMP:C, for Fx S∀ ∈ . At each iteration, the 

cx  is updated, and an item picked in the cx  is added into 
the x , this process is continued until cx ≡ ∅ . 

The updating of cx will be executed many times, which 
can be accelerated by establishing an intermediate array in 
advance with the indices of all items sorted by their wi.  

For the RIMP:C, a cost-based item-picking version is 
considered. Similar to the construction phase of the 
GRASP [17], each item in the cx  has an incremental cost 
(CINC) assigned by a cost-assigning operator (RCA), which 
is associated with clues from the problem. Then the item-
picking operator (RIP) picks a item according the cost 
values of all the items in the cx , where a larger cost value 
means higher probability for the item to be picked.   

For knapsack problems, the profit-to-weight ratio (rpw) 
associated with each candidate item provides strong 
correlated information. In his pioneer work, Danzig [14] 
provided an elegant way of finding an exact solution for 
the continuous 0-1 Knapsack version by sorting the items 
according to their rpw values. Balas [2] then defined the 
core problem for the 0-1 Knapsack problem, which may 
focus the computational effort on a small subset of the 
items, i.e. the core. Of course, only the approximate core, 
which may be specified in relative exactly, can be used 
since the optimal solution should be known in advance for 
determining the exact core. However, the core problems 
are still generally difficult to be solved [43]. 

For the QKP, the absolute profit (PA) for the ith item is:  

, j iA i i ijP p p≠= + ∑  (2)

where ijp = ijp for i<j, and ijp = jip for i >j. 

The relative profit (PR) for the ith item of a state x is:  

, j xR i i ijP p p∈= + ∑  (3)

The CINC value for each item must have positive 
correlation with the probability of the item belonged to a 
high-quality solution. Hence for knapsack problems, it is 



 

 

 

 

 
 

  

 

  

 
  
   

    

    

     

  
    

  

 
 

   

    

        

    
 
    

  

 

 
 
 
 
   
   

 

naturally for assigning the rpw as the CINC for each item, as 
a fast-and-frugal clue could be readily available. 

 Either absolute profit (PA) or relative profit (PR) can be 
used for calculating the rpw values [32]. The PR has richer 
information than the  PA, however, the computation is 

 Gmore costly since it must be re-calculated for each  x .  
 Here the improving phase is achieved by the  RIMP C

TS A&
: , 

which can be represented by a tuple < RCA
A , RIP

TS >.  

 The absolute RCA ( RCA
A ) is realized as: for each item i, 

rpw,i = PA,i/wi is returned as its CINC value. 
 The  tournament-selection RIP ( RIP

TS ) returns the item 
with the largest CINC value among totally MIN(NTS, NCXC) 
items chosen in the  xc at random, where NTS is tournament 

size and  NCXC is the cardinality of the xc . If  NTS=1, then 

the item is selected at random. If NTS≥NCXC, then the item 
with minimal CINC value in the xc is selected.  
C. The mini-Swarm optimizer 

 Now an optimizer under the mini-Swarm system may 
be established with specified elemental operators.  

 For behaviors, the  RT
G  is adopted as the RT. The RINI is 

realized by  RSCI
R  and  RSR RI

R TS&
: , and the RG is organized by a 

tuple < RSP
R ,  RSGI X

UX
: ,  RSR RI

R TS&
: > under the VGF

X . Here  RSR RI
R TS&

:

=< RREP
R ,  RIMP C

TS A&
: > is reused by both the RINI and the RG. 

 Then the algorithm parameters only include the number 
of agent (N) and the NTS for the  RIP

TS of the  RIMP C
TS A&

: . 

 V.  RESULTS AND DISCUSSIONS

 The experiments were performed on a collection of 
QKP instances provided by Billionnet and Soutif [5] 
(                                                                   ). There are two 
choices for the number of items (n), i.e. 100 and 200; and 
four choices for density (d), i.e. 0.25, 0.50, 0.75, and 1.00. 
For each specified n and d, there are ten instances. For the 
profit coefficients (pi and pij), zero elements are specified 
at random, and the non-zero elements are uniformly 
distributed between [1, 100] ] , the weight coefficients (wi) 

are chosen between [1, 50] ]  at random, and the capacity 
(c) is randomly selected between [50, max(50, wmax)] ] . 

 We have the following mini-swarm versions: a) #STD, 
where  NTS=2; b) #RND, where  NTS=1; and c)  #GRD, 
where  NTS=n. These versions may run under specified  N 

values. For the termination condition, the number of 
maximum cycles (TMAX) is fixed as 500, and the system is 
terminated if no further improvement occurs for 100 
cycles. The mini-Swarm is coded in JAVA, and run by 
Sun JVM version 1.5 on the 3.06GHz P4 processor under 
Red Hat Linux 7.3. For each problem instance,  100 
independent trials (NR) were performed. 
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FIGURE 2. RESULTS BY THREE MINI-SWARM VERSIONS 

 
TABLE 1. RESULTS BY #STD FOR 100-ITEM QKP INSTANCES  
Instance F* NS RPD TRUN tE (s) 

r_100_025_01 18558 100 0 56.12 0.430 
r_100_025_02 56525 100 0 12.86 0.170 
r_100_025_03 3752 100 0 24.89 0.190 
r_100_025_04 50382 100 0 25.12 0.920 
r_100_025_05 61494 100 0 0.06 0.064 
r_100_025_06 36360 100 0 45.24 0.415 
r_100_025_07 14657 100 0 27.36 0.233 
r_100_025_08 20452 100 0 27.06 0.313 
r_100_025_09 35438 39 0.117 58.07 0.801 
r_100_025_10 24930 100 0 45.10 0.890 
r_100_050_01 83742 100 0 24.93 0.273 
r_100_050_02 104856 54 0.028 19.69 0.224 
r_100_050_03 34006 88 0.008 48.47 0.366 
r_100_050_04 105996 100 0 8.82 0.137 
r_100_050_05 56464 100 0 30.06 0.669 
r_100_050_06 16083 100 0 30.92 0.263 
r_100_050_07 52819 100 0 36.36 0.417 
r_100_050_08 54246 100 0 37.69 0.416 
r_100_050_09 68974 100 0 34.99 0.950 
r_100_050_10 88634 100 0 35.48 0.345 
r_100_075_01 189137 100 0 0 0.090 
r_100_075_02 95074 75 0.014 72.32 0.749 
r_100_075_03 62098 100 0 30.89 0.349 
r_100_075_04 72245 100 0 42.40 0.522 
r_100_075_05 27616 100 0 23.23 0.210 
r_100_075_06 145273 100 0 13.64 0.555 
r_100_075_07 110979 100 0 34.52 0.341 
r_100_075_08 19570 100 0 25.67 0.192 
r_100_075_09 104341 100 0 33.81 0.417 
r_100_075_10 143740 100 0 17.79 0.209 
r_100_100_01 81978 100 0 28.63 0.271 
r_100_100_02 190424 100 0 20.59 0.230 
r_100_100_03 225434 100 0 2.41 0.190 
r_100_100_04 63028 100 0 32.70 0.400 
r_100_100_05 230076 100 0 3.23 0.106 
r_100_100_06 74358 100 0 29.66 0.330 
r_100_100_07 10330 100 0 11.23 0.120 
r_100_100_08 62582 100 0 27.49 0.257 
r_100_100_09 232754 100 0 5.55 0.109 
r_100_100_10 193262 100 0 18.10 0.240 

URL: http://cedric.cnam.fr/~soutif/QKP/



TABLE 2. RESULTS BY #STD FOR 200-ITEM QKP INSTANCES 
Instance F* NS RPD TRUN tE (s) 

r_200_025_01 204441 100 0 44.59 1.221 
r_200_025_02 239573 100 0 14.94 0.499 
r_200_025_03 245463 98 6.8E-4 14.72 0.536 
r_200_025_04 222361 100 0 23.69 0.726 
r_200_025_05 187324 100 0 65.64 1.571 
r_200_025_06 80351 28 0.054 136.89 2.781 
r_200_025_07 59036 77 0.036 136.10 2.583 
r_200_025_08 149433 100 0 99.37 2.038 
r_200_025_09 49366 100 0 87.78 1.405 
r_200_025_10 48459 100 0 67.73 0.940 
r_200_050_01 372097 100 0 45.57 1.292 
r_200_050_02 211130 26 0.005 106.65 1.825 
r_200_050_03 227185 100 0 88.98 1.606 
r_200_050_04 228572 100 0 62.89 4.801 
r_200_050_05 479651 100 0 12.12 0.501 
r_200_050_06 426777 100 0 39.34 1.053 
r_200_050_07 220890 100 0 93.90 2.066 
r_200_050_08 317952 100 0 72.20 1.726 
r_200_050_09 104936 100 0 77.22 1.097 
r_200_050_10 284751 98 4.2E-5 94.87 2.079 
r_200_075_01 442894 16 0.025 129.64 3.339 
r_200_075_02 286643 95 5.2E-5 129.06 2.797 
r_200_075_03 61924 100 0 42.74 0.656 
r_200_075_04 128351 100 0 63.19 1.232 
r_200_075_05 137885 100 0 62.03 1.127 
r_200_075_06 229631 100 0 79.66 1.661 
r_200_075_07 269887 100 0 86.67 6.291 
r_200_075_08 600858 98 1.5E-4 82.42 1.966 
r_200_075_09 516771 100 0 64.34 1.515 
r_200_075_10 142694 100 0 60.94 1.072 
r_200_100_01 937149 100 0 16.62 0.574 
r_200_100_02 303058 100 0 64.75 1.179 
r_200_100_03 29367 100 0 27.43 0.301 
r_200_100_04 100838 100 0 43.22 0.543 
r_200_100_05 786635 100 0 66.13 2.043 
r_200_100_06 41171 100 0 25.49 0.311 
r_200_100_07 701094 100 0 77.89 1.732 
r_200_100_08 782443 100 0 49.84 1.258 
r_200_100_09 628992 100 0 105.31 2.277 
r_200_100_10 378442 100 0 82.26 1.757 
 
Figure 2 summarizes the average results of all the QKP 

instances for their relative percentage deviation (RPD) 
versus the average execution time (tE) in seconds, by 
#STD, #RND, and #GRD under N=50, 100, 300, and 500. 
It can be seems that the #STD can achieve dominant 
results by comparing to that of both the #RND and the 
#GRD, and the #RND can achieve dominant results by 
comparing to that of the #GRD. Hence, the profit-to-
weight ratio values indeed carry positive clue, however, to 
use them in greedy way is normally not a good choice. 

Table 1 and 2 lists the summary of the optimum values 
(F*) and the performance indices, including the number of 
successful trials for achieving the optimum (NS), the RPD, 
the average running cycles (TRUN), and the tE (in seconds), 
by the #STD under N=500 for all 100- and 200-item QKP 
instances, respectively. It can be seen that about 85% of 
the instances can be solved in 100% success ratio (NS/NR). 

Table 3 compares the average time (in seconds) for 
solving exactly by a depth-first-search branch-and-bound 
algorithm (B&B) [5] with an relatively original variable 
fixing procedure and both the average execution time (in 
seconds) and the success ratio (NS/NR) of the #STD mini-
Swarm version under N=500, which can be summarized 
from Table 1 and 2, for the QKP instances under different 
n and d. The B&B algorithm has outperformed the 
performance two other algorithms [10, 24] that are able to 
handle the QKP instances of 100 items or more. This 
B&B algorithm was implemented in C language and the 
tests were run on a 300MHz Pentium II processor. For the 
B&B algorithm, it may be failed for solving the 200-item 
instances with large density values. For the mini-Swarm 
version, it can solve with much less computation time than 
the B&B while always obtain the success ratio larger than 
90% for all the instances in different n and d. Moreover, 
the mini-Swarm version is especially efficient for solving 
the instances with d=1.00, which may due to a larger 
variation between the profit and weight coefficients for the 
knapsack problems with larger density [44].   

 
TABLE 3. RESULTS BY B&B [5] AND #STD UNDER N=500 
 n=100 n=200 

d B&B #STD(N=500) B&B #STD(N=500)  
0.25 117 0.442(93.9%) 3602 1.430(90.3%) 
0.50 82 0.406(94.2%) 1690 1.805(92.4%) 
0.75 120 0.363(97.5%) - 2.165(90.9%) 
1.00 190 0.225(100%) - 1.197(100%) 

“-” means that at least one instance could not be solved within 
30000 seconds [5]. 

 
TABLE 4. RESULTS BY GGA [32] AND #STD UNDER 

DIFFERENT N VALUES FOR QKP INSTANCES (n=100, d=0.25) 
 GGA N=100 N=300 N=500 

RPD 0.034 0.035 0.016 0.012 
NS/NR 89.2% 84.1% 91.3% 93.9% 
tE (s) 1.144 0.090 0.310 0.442 

 
TABLE 5. RESULTS BY GGA [32] AND #STD UNDER 

DIFFERENT N VALUES FOR QKP INSTANCES (n=200, d=1.00) 
 GGA N=100 N=300 N=500 

RPD 0.001 0.014 2.2E-5 0 
NS/NR 91.2% 92.3% 99.9% 100% 
tE (s) 15.78 0.302 0.716 1.197 

 
Table 4 and 5 summaries three performance indices, 

including the RPD, the success ratio (NS/NR), and the tE 
(in seconds), for the results by the greedy GA (GGA) [32], 
and the #STD under N=100, 300, and 500, on the QKP 
instances as (n=100, d=0.25) and (n=200, d=1.00), 
respectively. The GGA has achieved best performance 
while comparing to two greedy heuristics and a naive GA 
[32]. Moreover, it is generational [53] and 1-elitist, while 
applies crossover and mutation independently in fixed 
probability on tournament selected individuals. It was 
implemented in C++ and executed on the 2.53GHz P4 
processor under the Red Hat Linux 9.0. Due to the 



restriction on information diffusion by the private memory 
of each agent, the mini-Swarm has more capability for 
exploring in parallel, and it is not so necessarily to 
maintain the diversity of socially sharing information by 
explicit mutations. As N=100, the #STD version can 
obtain comparable performance with the GGA, while the 
#STD versions under both N=300 and N=500 can achieve 
dominant results on all three performance indices by 
considering the minor difference between the CPU speed.  

VI.  CONCLUSIONS 

The QKP is a hard computational problem with a 
variety of applications. Due to its NP-hardness in strong 
sense, the studies on heuristic methods arise from practical 
interest, especially for the large sized QKP. 

Swarm algorithms may be considered as intelligent 
heuristic methods, which can be applied to a variety of 
optimization problems. In the mini-Swarm framework, 
each agent searches on the landscape according to guided 
generate-and-test behavior under the law of socially-
biased individual learning, which is based on extremely 
limited declarative knowledge and interacts with others 
through the socially sharing knowledge referred from all 
agents. The formal decomposition of behavioral rules 
allows the agents utilizing well-studied operators. The 
relations with some existing methods are then discussed.  

The extensive experimental results by the mini-Swarm 
versions on a collection of the QKP instances show its 
efficiency as comparing to some existing algorithms.  

Further studies may focus on applying the mini-Swarm 
on various optimization problems, including dynamic [36], 
multi-objective [13], or multi-constraint [11] cases, etc., 
and investigating various operators suitable for those 
problems, which may also be used by some autonomous 
agents and multiagent systems. Moreover, it is also 
interesting to study characteristics of swarm algorithms 
under various network topologies [40]. 
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