
METHODOLOGIES AND APPLICATION

A cooperative group optimization system

Xiao-Feng Xie • Jiming Liu • Zun-Jing Wang

Published online: 21 June 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract A cooperative group optimization (CGO) system

is presented to implement CGO cases by integrating the

advantages of the cooperative group and low-level algorithm

portfolio design. Following the nature-inspired paradigm of

a cooperative group, the agents not only explore in a parallel

way with their individual memory, but also cooperate with

their peers through the group memory. Each agent holds a

portfolio of (heterogeneous) embedded search heuristics

(ESHs), in which each ESH can drive the group into a stand-

alone CGO case, and hybrid CGO cases in an algorithmic

space can be defined by low-level cooperative search among

a portfolio of ESHs through customized memory sharing.

The optimization process might also be facilitated by a

passive group leader through encoding knowledge in the

search landscape. Based on a concrete framework, CGO

cases are defined by a script assembling over instances of

algorithmic components in a toolbox. A multilayer design of

the script, with the support of the inherent updatable graph in

the memory protocol, enables a simple way to address the

challenge of accumulating heterogeneous ESHs and defining

customized portfolios without any additional code. The

CGO system is implemented for solving the constrained

optimization problem with some generic components and

only a few domain-specific components. Guided by the

insights from algorithm portfolio design, customized CGO

cases based on basic search operators can achieve competi-

tive performance over existing algorithms as compared on a

set of commonly-used benchmark instances. This work

might provide a basic step toward a user-oriented develop-

ment framework, since the algorithmic space might be easily

evolved by accumulating competent ESHs.

1 Introduction

Under a suitable formulation, an optimization problem can

be cast to a search in a landscape (Stadler and Happel

1999) over a space of states, which is conceptually simple,

but often computationally difficult. The paradigm is gen-

eral from computational, evolutionary and cultural

perspectives.

Over the past few decades, many general-purpose opti-

mization algorithms have been proposed. Single-start

examples include hill climbing, simulated annealing, tabu

search, and plenty of other stochastic local search heuristics

(Hoos and Stutzle 2004). Population-based examples

include genetic algorithm (GA) (Deb 2000; Farmani and

Wright 2003), evolution strategy (ES) (Mezura-Montes and

Coello 2005; Runarsson and Yao 2005; Wang et al. 2008),

memetic algorithm (MA) (Chen et al. 2012; Ong et al.

2006), cultural algorithm (CA) (Becerra and Coello 2006;

Reynolds et al. 2008), ant colony optimization (ACO)

(Socha and Dorigo 2008), particle swarm optimization

(PSO) (Kennedy et al. 2001; Lu and Chen 2008), differ-

ential evolution (DE) (Becerra and Coello 2006; Omran

Communicated by Y.-S. Ong.

X.-F. Xie (&)

The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

e-mail: xfxie@cs.cmu.edu

J. Liu

Department of Computer Science, Hong Kong Baptist

University, Kowloon Tong, Hong Kong

e-mail: jiming@comp.hkbu.edu.hk

Z.-J. Wang

Department of Physics, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

e-mail: zwang@cmu.edu

123

Soft Comput (2014) 18:469–495

DOI 10.1007/s00500-013-1069-8

[Cooperative Group Optimization] http://www.wiomax.com/optimization

and Engelbrecht 2009; Price et al. 2005), social cognitive

optimization (SCO) (Xie et al. 2002), group search opti-

mizer (GSO) (He et al. 2009), and some other algorithms

(Barkat Ullah et al. 2009; Liu et al. 2007; Takahama and

Sakai 2005; Xie and Liu 2009; Xie and Zhang 2004).

On the one hand, existing algorithms have explored

various metaphors, in which evolution and learning (Hin-

ton and Nowlan 1987) are central issues for the adaptability

in different landscapes. Algorithms inspired by biological

evolution, such as GA and ES, indicate the power of

emergent collective intelligence at the population level.

Both CA and MA try to emulate cultural evolution upon a

canonical population: CA (Reynolds et al. 2008) is a dual

inheritance system, which uses a belief space to provide

positive clues for the population; and MA (Chen et al.

2012; Ong et al. 2006) stresses that individual learning,

which is normally realized by local search heuristics, can

guide the evolution (Hinton and Nowlan 1987). From the

viewpoint of learning, evolution can be seen as evolu-

tionary learning (Curran and O’Riordan 2006), in which

public information can be regarded as a collective memory

used by cooperative search entities. In ACO, heuristics are

owned by reflex agents called ants (Socha and Dorigo

2008) without individual memory, which are cooperated on

inadvertent public memory.

Groups are very common in animals (Galef 1995; Leon-

ard et al. 2012) and human communities (Dennis and

Valacich 1993; Goncalo and Staw 2006; Nemeth 1986;

Paulus 2000; Tomasello et al. 1993). Well-studied group

phenomena include collective cognition (Leonard et al.

2012), cultural learning (Boyd et al. 2011; Curran and

O’Riordan 2006; Galef 1995; Tomasello et al. 1993), and

group intelligence (Goncalo and Staw 2006; Paulus 2000;

Satzinger et al. 1999; Woolley et al. 2010), of which can

promote adaptability and productivity. From an algorithmic

viewpoint, a group can be represented by multiple agents that

search the solutions in a common environment (Platon et al.

2007), in which the problem landscape can be seen as a

common metric space associated with a computational or

cognitive representation. In a cooperative group, each agent

possesses a limited search capability through a mix of both

individual and social learning (Boyd et al. 2011; Curran and

O’Riordan 2006; Galef 1995; Tomasello et al. 1993).

Compared to a stigmergic group, e.g., ACO (Socha and

Dorigo 2008), the agents in a cooperative group can preserve

some promising minority patterns (Nemeth 1986) with their

personal memories (Ericsson and Kintsch 1995; Glenberg

1997) while they search in a parallel way. Compared to a

nominal group (Dennis and Valacich 1993) that individuals

work separately, the cooperative agents also interact with

their peers through the shared group memory (Danchin et al.

2004; Dennis and Valacich 1993). On the other hand,

existing algorithms have provided plenty of search

components, and hybrid metaheuristics has been widely used

for optimization. In Ong et al. (2006), local search strategies

were adaptively employed. In Runarsson and Yao (2005), ES

was improved by using a differential variation. DE has been

hybridized with different algorithms (Omran and Engelbr-

echt 2009; Zhang and Xie 2003). In OEA (Liu et al. 2007),

several evolutionary operators searched together. There are

some significant practices in multimethod (Vrugt et al.

2009), multi-operator (Elsayed et al. 2011; Elsayed et al.

2012, 2013), and ensemble algorithms (Mallipeddi et al.

2010a, b; Mallipeddi and Suganthan 2010). These algo-

rithms, either in pure or hybrid forms, have been shown to be

competent over different sets of problem instances, as mea-

sured using some quality metrics (Hoos and Stutzle 2004).

The motivation behind metaheuristic frameworks (Lau

et al. 2007; Parejo et al. 2012) might be explained using the

No Free Lunch theorems (Wolpert and Macready 1997) that

any algorithm can only be competent on some problem

instances. Conceptual frameworks (Milano and Poli 2004;

Raidl 2006; Taillard et al. 2001; Talbi 2002) have been

proposed for providing common terminologies and classi-

fication mechanisms. Typical software realizations include

HeuristicLab (Wagner 2009), ParadisEO (Cahon et al.

2004), and JCLEC (Ventura et al. 2008), etc. Within these

frameworks, different algorithm paradigms are coded with

some specific interfaces, and are then configured using

configuration files to pick instances in a toolbox (Anderson

2005; Gigerenzer and Selten 2001; Raidl 2006) of reusable

components. Some frameworks provide basic relay and

teamwork hybrids (Parejo et al. 2012; Talbi 2002), and some

frameworks include advanced mechanisms, e.g., ‘‘request,

sense and response’’ (Lau et al. 2007) and ‘‘operator graph’’

(Wagner 2009), that facilitates rapid prototyping of hybrid

metaheuristics. Each framework can provide an algorithmic

space, but walking within the space might be inefficiently,

since algorithmic components are effective only as they are

embedded in certain environments, and no easy hint is

available to understand their behavioral changes. For end

users, advanced knowledge is needed to adapt the frame-

work to user-specific problem sets (Parejo et al. 2012).

Theoretic work in algorithm portfolio design has pro-

vided two nontrivial insights (Huberman et al. 1997;

Streeter and Smith 2008). First, combining some compe-

tent strategies into a portfolio may improve the overall

performance by exploiting the negative correlation among

their individual performance. Second, the performance can

be further strengthened through low-level cooperative

search among individual algorithms. Thus, any competent

algorithm cases become precious knowledge to be accu-

mulated to adapt to changes over time. For end users, it is

much easier to understand the offline performance of

individual algorithms rather than to understand the com-

plex behavior of algorithmic components.

470 X.-F. Xie et al.

123

It is challenging to support cooperative algorithm port-

folios in a development framework, though. Traditionally,

heterogeneous algorithms might only loosely cooperate

through a communication medium (Talbi 2002). Imple-

menting low-level hybridization of heterogeneous algo-

rithms would often require expert-level modification of

framework code in forming meaningful algorithms.

In this paper, a cooperative group optimization (CGO)

system is proposed to utilize the synergy between the

cooperative group and algorithm portfolio design. This

nature-inspired metaphor allows us not only inheriting the

adaptability and productivity of a cooperative group, but

also possessing the generality to accumulate various search

heuristics for existing metaphors. Furthermore, each agent

hold a portfolio of heterogeneous embedded search heu-

ristics (ESHs), in which each ESH can drive the whole

group into a stand-alone CGO case, and hybrid CGO cases

can be defined by cooperative search among a set of com-

petent ESHs that share customized memory elements. In

addition, the optimization process might also be accelerated

by a passive group leader through adaptively shaping the

search landscape, if any global features are available.

Based on a concrete framework, CGO cases are defined

by a script assembling over different instances of algo-

rithmic components in a toolbox. A multilayer design of

the script, with the support of the inherent updatable graph

in the protocol among memory elements, enables a possible

way to address the challenge of accumulating heteroge-

neous ESHs with a few algorithmic components, and

building customized portfolios without writing any addi-

tional code. For end users, it is possible to easily define

competent hybrid metaheuristics for specific problem sets

using offline performance information of individual ESHs,

based the insights from portfolio algorithm design.

The rest of this paper is organized as follows. In Sect. 2,

a generic CGO system is presented in details. In Sect. 3, the

CGO system is implemented for solving the constrained

optimization problem (Deb 2000) with a few domain-spe-

cific components. In Sect. 4, based on a set of well-known

benchmark instances (Liang et al. 2006; Runarsson and

Yao 2005), the process of algorithm portfolio design is

demonstrated, and the experimental results of customized

CGO cases are compared to that of existing algorithms in

literature. In Sect. 5, we discuss related work and possible

extensions. This paper is concluded in the last section.

2 CGO system

The whole CGO system can be represented by a triple, i.e.,

hFramework; Toolbox; Scripti, as shown in Fig. 1. The

toolbox contains some reusable algorithmic components. The

multiagent framework realizes cooperative group optimiza-

tion (CGO) algorithms, which is driven by the script with

some interfaces for embedding valid instances of compo-

nents in the toolbox. Figure 1 is used in the whole section

while the details of the CGO system are gradually introduced.

The system is designed to accommodate three levels of

usages. First, the CGO framework supports the basic con-

cept of low-level portfolio algorithm design in a coopera-

tive group. Second, algorithm designers might realize

different algorithmic components in the toolbox with some

basic interfaces. Finally, basic users can realize (hybrid)

CGO algorithms using a multi-layer script, whereas the

framework and any components in the toolbox are simply

reusable black-box objects. The last two usages also enable

the CGO system to be evolvable.

Basically, the CGO framework follows a modular (and

autonomous) design. For a module contains multiple

components, an connection to that module means the

information can be accessed by all of its components

(although might only be used by some of them). For

example, F
ðtÞ
R is accessed by the components in the

Fig. 1 The CGO system: the multiagent framework, the multilayer script and primary interfaces, and the toolbox

A cooperative group optimization system 471

123

interactive center and all agents, and MA and MS are used

by components in the executive module of each agent.

There is a direct connection between two components

across two modules if the usage is specific. For example,

MA of each agent is accessed by BCO in the interactive

center. For simplicity, some modules are anonymous.

This section is structured as follows. We first introduce

basic type-based concepts and notations. Sections 2.2–2.4

then describe the framework, toolbox and script. Further

details of memory and behavior in the CGO framework

will be described in Sect. 2.5. In Sect. 2.6, the execution

process of the CGO framework is described based on all

these building blocks.

2.1 Preliminary concepts

The CGO system is full of knowledge elements that can be

organized in a type-based representation. Each knowledge

element can be accessed by using its identifier, referring to

a name and a type, in which the type defines some prop-

erties for facilitating knowledge sharing, and the name

ensures the uniqueness. For each type, a compatible type is

a subtype or the same type.

The general problem-solving capability arises from the

interaction of declarative and procedural knowledge

(Anderson 2005). A basic declarative component, called a

chunk, aggregates a small amount of problem information

in a specific data structure. A procedural component con-

tains actions, in which each works on some input/output

parameters. It is called a rule if it has one action. Each

component might have some setting parameters. For a

macro component, one or more setting parameters are

component types rather than primitive data types.

In the CGO toolbox, each algorithmic component is a

binary object that can be instantiated using its actual type and

valid setting parameters. Each parameter or script interface

has a formal type, which is either a primitive data type or a

component type for accepting an instance of any knowledge

component if its actual type is a compatible type.

The CGO script is used for calling instances of algorithmic

components of specific interfaces in the toolbox. Primary

interfaces are directly supported types, whereas association

interfaces might be introduced from components that are

embedded as setting parameters of macro components.

2.1.1 Notation

Normally, a type is notated in the form of TG
ðtÞ
TK or TG

ðtÞ
ðTTÞ,

in which TG indicates the general type; TK represents a key

variant, e.g., a subtype or with a nontrivial property; TT in

the subscript parentheses means a simple variant, which is

often used as the names of similar instances; and t in the

superscript parentheses stresses it possesses the dynamic

property in a time-varied style, where t means at the tth

learning cycle.

Here are general types1 to be used in this paper. Some

types are related to the problem, where ‘‘F’’ means a

problem representation and ‘‘S’’ means a space of states. As

major building blocks for solving capability in the CGO

framework, ‘‘M’’ is a memory containing some chunks, and

‘‘B’’ is a behavior with actions that directly or indirectly

interact with some chunks in memory. ‘‘C’’ means a setting

parameter of a component.

Some general types are used for chunks. ‘‘CH’’ is used

to mention a chunk in general, but each specific chunk has

a general type. A set of chunks of the same type ‘‘CH’’ can

be organized into a chunk set, called ‘‘$CH’’, in which ‘‘$’’

means a set. ‘‘E’’ means a list of ordered chunks of arbi-

trary types.

Only the notation for rules is more complicated, since

lots of rules, in which actual types can be subtypes of

(subtypes of) some formal types, might be realized to make

the system flexible and evolvable.

A rule is notated in the form of R
TAðtÞ
TKðTTÞ, in which ‘‘R’’ is

the general type, TA stresses an actual type. If TA is not

used, it is a formal type (an abstract rule) that is used for a

parameter. If necessarily, a subtype of TK is notated as

TK:TKC, where TKC after ‘‘:’’ indicates the unique prop-

erties associated with the subtype, and a further subtype

can be notated in the same way.

2.2 CGO framework: overall description

The CGO framework supports the cooperative search of a

group of totally N agents. All the agents are of the same

structure. Figure 1 shows one of the agents and the shared

environment that contains a facilitator and an interactive

center. Each agent possesses a limited search capability

and can only indirectly interact with its peers through the

shared environment, in order to achieve the common goal

of finding a near optimal solution x�� for the problem FP.

The CGO framework runs in iterative learning cycles.

The execution is terminated if the number of learning

cycles (t) achieves the maximum cycle number (T).

2.2.1 Facilitator

For a global optimization problem FP to be solved, an

essential landscape (Paulus 2000; Satzinger et al. 1999)

can be represented as a tuple hSP;RMi. The problem space

1 Note that the same symbol no longer means a general type if it

appears at other places. Taking ‘‘MS’’ as an example (‘‘M’’ is its

general type), ‘‘S’’ means a key variant rather than the general type of

a space of states.

472 X.-F. Xie et al.

123

(SP) contains all the states to be searched, in which each

state x is a potential solution. For a real-world group, the

states of FP might be viewed as creative ideas (Paulus

2000). The quality-measuring rule (RM) measures the dif-

ference of quality between 8xðaÞ; xðbÞ 2 SP: if the quality of

x(a) is better than that of x(b), then RM(x(a), x(b)) returns

TRUE, otherwise it returns FALSE.

The facilitator maintains a natural representation (FN)

and an internal representation (FR), which are both

formulated from the problem FP. For FN = hSP;RM:Ni,
the RM:N rule is an RM rule possessing the natural

property that faithfully measuring the quality among

candidate states as the same as in the original problem

FP. It is used by the solution-keeping behavior (BSK) to

update the best-so-far state x�� of FP among all states

that are generated by agents. Specifically, BSK replaces

x�� by any state x 2 SP if x has a better quality, based on

the RM:N rule. The optimal solution of FP is ensured to

be kept if it is visited.

For FR = hSP;RMðRÞ;AUXi, the RM(R) rule can be an

arbitrary RM rule, and AUX contains any auxiliary com-

ponents associated with structural information of FP that

might be useful for search. The basic usage of FR is to

encapsulate any knowledge in FP that will be further pro-

cessed to find solutions. It is the internal problem used in

the interactive center and all agents.

Both FN and FR are representations on SP. However, FN

is not used for providing search clues, whereas FR might

deviates from original problem landscape during the run-

time for facilitate the search process.

For a specific problem type, SP, RM:N, and AUX can be

predefined, since SP is defined in FP, only one RM:N rule is

required (since different RM:N rules are equivalent for the

usages in FN), and AUX is normally rather concise in

practical usages (although it is suitable to put any avail-

able and useful knowledge into AUX). Thus the main

effort is to implement an RM rule as the input for RM(R). A

simple way is to set RM(R) = RM:N, but more domain-

specific RM(R) might be designed if landscape features are

available. An example of the facilitator will be demon-

strated in Sect. 3.3.

The facilitator might be viewed as a passive group

leader, who can influence the solving process by providing

and adaptively updating FR, but not directly managing the

operations of any agents. The problem landscape might be

transformed by using an unnatural RM rule that incorpo-

rates suitable knowledge. For example, approximate mod-

els (Jin et al. 2002) may smooth a rugged landscape, and

constraint-handling techniques (Hamida and Schoenauer

2002; Runarsson and Yao 2005; Xie and Zhang 2004) have

been widely used. An adaptive R
ðtÞ
MðRÞ rule might be realized

by feeding a run-time chunk in MS.

2.2.2 Agents and interactive center

The search process for solving FR is performed by the

agents with the support of the interactive center. The

general solving capability arises from the interplay

between memory and behavior (Anderson 2005).

In cognitive theories, memory (Anderson 2005; Ericsson

and Kintsch 1995; Glenberg 1997) is a basic component for

supporting the learning process. The importance of using

(public) memory has been also addressed in some com-

putational frameworks (Lau et al. 2012; Milano and Poli

2004; Taillard et al. 2001).

Specifically, memory is used for storing and retrieving

chunks, in which each chunk contains certain particularities

of state(s) in FR. In this paper, a conceptualization model

(Glenberg 1997) is used, which only requires a bounded

space complexity, as compared to the unbounded memory

used in some cognitive architectures (Anderson 2005).

Each memory holds a list of permanent cells, in which each

cell possesses a unique cell type and only stores the chunk

of a compatible type as its content.

Two memory types, i.e., long-term memory (LTM)

(Ericsson and Kintsch 1995) and buffer, are classified

according to if all stored chunks are cleared at the end of

each learning cycle or not. For a LTM, the chunk in each

cell must be filled at the initialization stage and is subjected

to be updated during the run-time. Note that each LTM cell

only keeps the most recently updated chunk.

From the viewpoint of each agent, there are three basic

memories, including a generative buffer (MG) and an

individual memory (MA) of its own and a social memory

(MS) in the interactive center. For each agent, the two long-

term memories, i.e., MS and its MA, store all currently

available past experience for it, while the buffer MG tem-

porarily stores a chunk that is newly generated by it, in

each learning cycle.

In a LTM, a chunk possesses either the genuine or

dependent property according to if it only contains inde-

pendent data or it is a specific data structure only desig-

nating the references to other chunks. In this paper, we only

considered three kinds of LTM: MA only contains genuine

chunks, whereas two sub-memories MSG and MSD in MS

respectively possess genuine and dependent chunks. Here

MSD is used for sharing non-private chunks (Liu and Tsui

2006) in MA of all agents.

All chunks in LTMs must be initialized and might be

updated during learning cycles. The memories with genu-

ine chunks, including MA in all agents and MSG in the

interactive center, are initialized by using the initializing

behavior (BINI). These genuine chunks are updated in a

similar way: chunks in MA and MSG are respectively

updated by the MA-updating (BUA) and MSG-updating

(BUSG) behaviors through respectively using the chunks in

A cooperative group optimization system 473

123

the buffers MBA and MBSG. The dependent chunks in MSD

are initialized by the collecting behavior (BCO) for col-

lecting non-private chunks in MA of all agents, and are

automatically updated if the referring chunks in MA of any

agents are changed.

For each agent, its executive module performs the meta-

managing (BMM), generating (BGEN), and submitting

(BSUB) behaviors at each learning cycle. For a given CGO

algorithm case, the BMM behavior probabilistically selects

one of its executive rows, in which the generative part is

executed by the BGEN behavior for outputting a new chunk

into MG by using the inputs in MA and MS, whereas the

updating list is used by the BSUB behavior for submitting

chunks from MA (cloned) and MG into specific buffer cells

of MBA and MBSG. Each chunk in MG possesses the solution

property that can export a potential solution x. The

potential solution is exported to the facilitator as a candi-

date for the best-so-far solution x��:

2.3 CGO toolbox

The toolbox contains some addable/removable algorithmic

components of specific interfaces. Each component can be

called symbolically using its identifier and setting parame-

ters (thus the actual realization might be in a black box for

end users). Primary interfaces are directly called by the CGO

script (in Sect. 2.4), whereas background components of

association interfaces might be used in components of pri-

mary interfaces, if necessarily. One nontrivial usage of the

toolbox is to embed knowledge units that are commonly used

in existing optimization algorithms, whereas novel algo-

rithmic components might also be supported, if available.

The chunks in MA, MS, and MG are of some primary chunk

interfaces. In general, a chunk interface is notated as ‘‘CH’’.

Since there are a group of agents, if any type CH is used in MA

and MG, then $CH is automatically considered as a primary

interface, in which ‘‘$’’ means a set of chunks.

Most straightforward primary chunk interfaces include a

state x and a state set $x. For example, $x can be used as a

population of individuals in many evolutionary algorithms.

In stochastic local search strategies (Hoos and Stutzle 2004),

x is used as an incumbent solution to be improved. There are

some other types in existing algorithms. In ES (Runarsson

and Yao 2005), the chunk to be generated is of a combined

type ðx; rÞ, in which r is used for a log-normal distribution.

In model-based algorithms, probabilistic models (e.g., a

pheromone matrix; Socha and Dorigo 2008) are used, which

can be seen as chunks in the public memory.

For the facilitator, only RM is considered as a primary

rule interface for realizing RM(R) in FR. For constraint

optimization, RM can be used for embedding constraint-

handling methods (Hamida and Schoenauer 2002;

Runarsson and Yao 2005; Xie and Zhang 2004). RM might

use one chunk in MS as its input for run-time guidance.

For the agents and the interactive center, there are three

primary rule interfaces, i.e., elemental initializing (RIE),

updating (RUE), and generating (RGE) rules.

Specifically, RIE instances are used by BINI for initial-

izing MA and MSG, RUE instances are used by BUA and

BUSG for updating MA and MSG by respectively using the

buffers MBA and MBSG, and RGE instances are used by BGEN

for generating new chunks into MG.

All the components the facilitator can access FN,

whereas all the components in the agents and the interac-

tive center can access FR by default. Primary rule interfaces

might have various subtypes. Some subtypes are problem-

specific, whereas some subtypes are generic across differ-

ent problem types (e.g., the constrained optimization

problem, graph coloring, and traveling salesman problem),

by using only generic knowledge in FR. Only some generic

subtypes are introduced here as examples, whereas some

problem-specific subtypes will be introduced in Sect. 3,

when we demonstrate the actual implementation on a

specific problem type.

2.3.1 Background rules

In this paper, two selecting rules are used in other rules (RUE:X

and RGE rules respectively in Sects. 2.3.3 and 3.4). A selecting

rule (RSEL) chooses one state x(O) from a state set $xðIÞ.

The greedy RSEL rule (RG
SEL) has no setting parameter. It

simple returns the best state among the states in $xðIÞ by

comparing to each x 2 $xðIÞ one by one, using the RM(R)

rule in FR.

The tournament RSEL rule (RTS
SEL) has two setting

parameters, i.e., a tournament size CNTS, a Boolean quality

flag CBQ. It is executed as the follows. First, totally CNTS

states are selected from $xðIÞ at random. Second, these

states are compared by using the RM(R) rule, and the state

with a better quality or a worse quality is kept, if CBQ is

TRUE or FALSE, respectively. Finally, the last surviving

state is outputted as the selected state x(O).

2.3.2 Elemental initializing rule

The RIE rule has an output chunk CH(I). Each actual RIE

rule is used for initializing each chunk in MSG and each

chunk set $CHðMÞ, in which CH(M) is a chunk in MA of each

agent.

The RIE:X subtype is an RIE rule that outputs a state set

$x as CH(I). For the random RIE:X rule (RRND
IE:X), each element

in $x is randomly generated by RRND
GE within the problem

space SP.

474 X.-F. Xie et al.

123

2.3.3 Elemental updating rule

The RUE rule has two input chunks, i.e., (CH(M), CH(U)),

and updates the chunk CH(M). Each RUE rule is used for

updating a genuine chunk CH(M) in MA or MSG. Here we

only consider two basic subtypes.

The RUE:S(x(a), x(d)) rule replaces x(a) by x(d) in a spe-

cific condition. There are two simple RUE:S rules: (a) the

direct RUE:S rule (RD
UE:S), which replaces unconditionally;

and (b) the greedy RUE:S rule (RG
UE:S), which carries out the

replacement if RM(R)(x(a), x(d)) : TRUE.

The RUE:Xð$xðaÞ; $xðdÞÞ rule forms a new $xðaÞ by pick-

ing some of the states in $xðaÞ [$xðdÞ. Various subtypes of

RUE:X are used in evolutionary algorithms for updating the

population with new individuals. The tournament-selection

RUE:X rule (RTS
UE:X), which has one setting parameter called

CNTW, is realized as follows. For each state in $xðbÞ, it

replaces one state in $xðaÞ that is selected by an RTS
SEL

instance (defined in Sect. 2.3.1) with CNTS = CNTW and

CBQ = FALSE.

There are some other subtypes used in existing

algorithms. For example, in ACO (Socha and Dorigo

2008), CH(M) is a pheromone matrix and CH(U) is a state set

$x.

2.3.4 Elemental generating rule

The RGE rule has an ordered list of input chunks E(IG), and

an output chunk CH(OG) that has the solution property.

Each actual RGE rule performs the search role for gener-

ating a new chunk.

Inputs/outputs of RGE rules might be arbitrarily defined,

although most of them are defined in simple forms. Using a

list of input chunks in E(IG) allows flexible cooperative

search between RGE rules by sharing some chunks. Using a

single chunk in CH(OG) enables a simple realization, but

without loss of generality.

In many existing algorithms, their search operators can

be seen as RGE rules that output x, although they might use

different element(s) in E(IG). An extreme case is for a

search rule start from scratch, in which EðIGÞ ¼£. For

example, a random RGE rule (RRND
GE) is a generic rule that

generates a random state within SP. Some of them only use

one element in E(IG). For example, a local search heuristic

RLS uses an incumbent state, whereas each ant in ACO

(Socha and Dorigo 2008) uses a pheromone matrix. Some

of them, e.g., PSO, DE, and SCO (as will be introduced in

Sect. 3.4), use multiple elements in E(IG). Some search

operators do use other elements rather than x as CH(OG).

For example, the chunk to be generated in ES (Runarsson

and Yao 2005) is of a macro type ðx; rÞ for encoding a log-

normal distribution around x.

Moreover, RGE can be realized in macro forms that

support some association interfaces. For example, for an

RGE rule that has EðIGÞ ¼ f$xg and CH(OG) = x, a possible

relay form (Talbi 2002) is a tuple hRSEL;RXSi (Xie and Liu

2010), in which RXS is a recombination rule that outputs

x by using two parents x(1) and x(2) independently selected

from $x by the RSEL rule. Furthermore, a mutation rule or a

local search rule can be linked for perturbing or improving

the output state x (Ong et al. 2006; Talbi 2002).

2.4 CGO script

As shown in Fig. 1, the CGO framework is driven by a

script realized in multiple layers. The script body includes

overall setting parameters, problem specification (SPEC-

F), memory protocol specification (SPEC-MP), generative

specification (SPEC-G), and meta-management specifica-

tion (SPEC-MM). For all the interfaces in the script,

instances of components in the toolbox are used. Only a

few setting parameters on component instances might be

defined as script parameters if they are explicitly assigned.

In the practical usage, a CGO algorithm case can be

defined by a case identifier (IDC) and a few script param-

eters, based on a given script body that reusing a few

existing specifications.

The lowest two layers are quite simple. The overall

script parameters include the number of agents (N) and the

maximum number of learning cycles (T). In the facilitator,

the problem specification (SPEC-F) is

SPEC-F ¼ hRMðRÞi;

since the other elements, i.e., SP, RM:N, and AUX, can be

easily predefined for a specific problem type.

The upper three layers are used for driving all modules

in the agents and the interactive center. Each layer contains

addable/removable elemental rows for supporting an

evolvable property in an algorithmic space.

2.4.1 Memory protocol specification

The memory protocol specification (SPEC-MP) defines

how will the chunks be initialized and updated in MA of all

agents and MS of the interactive center, given any chunk is

newly generated in MG of the agents. SPEC-MP might be

seen as a domain ontology for encoding low-level knowl-

edge units (Edgington et al. 2004). In Fig. 1, it is used for

driving the modules in all agents and the interactive center,

except for the meta-managing (BMM) and generating

(BGEN) behaviors in the agents.

Formally, SPEC-MP contains a table of memory proto-

col rows, in which each contains five elements, i.e.,

SPEC-MP Row ¼ hIDM;CHM;RIE;RUE;CHUi;

A cooperative group optimization system 475

123

where IDM 2 fMA;MSG;MSDg;CHM at each row is a

unique chunk in the memory referred by IDM. In SPEC-

MP, the second column defines the three lists of chunks in

MA, MSG, and MSD. The list of chunks in the last column

contains all chunks in MA and MG. The chunks in the

columns of CHM and CHU belong to primary chunk

interfaces. Each chunk in MG possesses the solution

property that can export a state x.

The last three elements are defined differently for gen-

uine and dependent chunks. If CHM 62 MSD;RIE and RUE

are elemental initializing and updating rules for CHM, and

CHU 2 MA [MG is a candidate chunk for updating CHM.

If CHM 2 MSD;RIE and RUE are null, and CHU 2 MA, since

each chunk in MSD is automatically updated using chunks

in MA of all agents.

The validity of SPEC-MP can be locally checked in two

steps. The first step is to ensure that the types used in each

row are locally compatible. Notice the fact that there are

multiple agents but only one interactive center. If

CHM 2 MSD, then its type is $CHU , in which each element

is CHU in MA of all agents. Table 1 gives the types of

input/output parameters of RIE and RUE for the chunks in

MA and MSG. There are two special cases of using a chunk

set. If CHM 2 MA;RIE is used for initializing CHM in MA of

all agents. If CHM 2 MSG;MBSG will collect all chunks that

are submitted from agents in each learning cycle as the

inputs of RUE for updating CHM.

The second step is to ensure the validity across all rows.

First, each CHM must be unique, and each CHU 2 MG must

possess the solution property. Second, each chunk CHM

should be updatable, i.e., has the probability to be updated

by chunks that are generated in MG, across multiple cycles.

Notice that if a row is used in a cycle, CHM is updated by

CHU.

The validity of updatable relations can be easily checked

by using an updatable graph that is formed from all rows in

SPEC-MP: For each row, CHU is the parent node of CHM.

A valid updatable graph contains separate trees, where for

each tree, the root is a chunk in MG, the children are chunks

in MA and MS, and each chunk in MS is always a leaf node.

An example of a valid updatable graph, which contains a

single updatable tree, is provided later in Table 2.

Furthermore, SPEC-MP can be easily maintained by

using the updatable graph. Except for the root nodes, each

other node in the updatable graph is CHM in a unique

memory protocol row. Each leaf node (i.e., the

corresponding row), if it is not used by the upper layer, can

be removed without changing the validity of the remaining

graph. A whole tree is removed from the graph if only its

root node is left. Each new node can be added to either a

leaf node or a root node.

SPEC-MP provides an essential support for the stability

in cooperative search. If CH
ðtÞ
M is used by different search

heuristics, it is always updated by RUE and CH
ðtÞ
U in the

same row.

2.4.2 Generative specification

The generative specification (SPEC-G) contains a set of

generative rows, in which each generative row is

SPEC-G Row ¼ hIDG;RGE;EIG;CHOGi;

where IDG is a unique name, RGE is an elemental gener-

ating rule, EIG is an ordered list of chunks, CHOG is a

chunk. Each IDG designates an ESH that is corresponding

to a stand-alone algorithm case.

The validity of SPEC-G only needs to be locally ensured

in each ESH, based on the memory protocol specification

(SPEC-MP). First, each chunk in EIG belongs to MA [MS,

and CHOG 2 MG. Second, EIG and CHOG are respectively

linked to the input/output parameters of the RGE rule. Third,

all chunks in EIG [CHOG must be updatable, i.e., these

chunks form a subtree that contains one root node (i.e., a

chunk in MG) in the updatable graph defined in Sect. 2.4.1.

Each generative row is independent to the other. New

ESHs can be freely added into SPEC-G, or be removed

from SPEC-G if it is not used in any portfolio.

2.4.3 Meta-management specification

The meta-management specification (SPEC-MM) defines a

customized portfolio within an algorithm space that is

formed by using some ESHs as the bases.

Each algorithm case has a name (IDC) and contains a set

of executive rows, in which each executive row contains

three elements, i.e.,

SPEC-MM Row ¼ hIDG;EUPD;CWi;

in which IDG is the name of an ESH in SPEC-G, the

updating list EUPD contains a list of genuine chunks, and

CW C 0 is a weight value for the row.

The selection probability for each executive row is CW/
P

CW. Thus any executive row is ignored if it has CW = 0.

Any two executive rows are called cooperative rows if

their EUPD lists share at least one element, otherwise they

are independent to each others.

For ensuring the validity of each CGO algorithm case,

EUPD in each row must satisfy EIGG � EUPD � EIGM , in

Table 1 Generic types of input/output parameters of RIE and RUE

rules

IDM CH(I) of RIE CH(M) of RUE CH(U) of RUE

MA $CHM CHM CHU

MSG CHM CHM $CHU

476 X.-F. Xie et al.

123

which EIGG contains the list of all genuine chunks in EIG of

the corresponding ESH, and EIGM ¼
S

EIGG for EIGG of all

ESHs. The intuition is that each chunk that is used by ESHs

must be actively updated. By default, there are CW = 1 and

EUPD = EIGG for each (independent) ESH that is newly

added as an executive row in SPEC-MM.

If ESHs use input chunks in the same tree of the upd-

atable graph in SPEC-MP, their EUPD lists might be cus-

tomized in EIGM. An algorithm case is called as in the

customized or default mode according to any EUPD is

customized or not. The customization of EUPD lists can turn

independent ESHs into cooperative ESHs, and can make

cooperative ESHs cooperating more.

2.5 CGO framework: memory and behavior

As shown in Fig. 1, the memory and behavior in the agents

and the interactive center are driven by the script using

some components in the toolbox.

2.5.1 Long-term memory and buffer modules

As described in Sect. 2.4.1, the genuine chunks in MA and

MSG, and dependent chunks in MSD are defined in the first

two columns of SPEC-MP, and the root nodes in the

updatable graph of SPEC-MM form the list of chunks that

are supported in MG. Each chunk in MA and MS can be

retrieved by each agent. Any new solution contained in MG

is submitted to the facilitator.

The buffers MBA and MBSG are respectively used for

updating MA and MSG, where their cells are of one-to-one

mapping based on each row of SPEC-MP, i.e., each cell in a

buffer accepts CHU if it is used for updating a chunk CHM in

MA or MSG. As shown in the last column of Table 1, the

corresponding cell types of MBA and MBSG are respectively

CHU and $CHU , since each agent only submit once to its MBA,

whereas all agents might submit chunks to cells in MBSG.

2.5.2 Initializing and updating behavior

The initializing behavior (BINI) is used for initializing the

genuine chunks in LTMs during the initialization stage

(t = 0). For each row in SPEC-MP, BINI executes the RIE

instance to obtain $CHM for CHM 2 MA of all agents and

CHM 2 MSG of the interactive center (as the output types

shown in Table 1).

Duraing the runtime (t [0), the chunks in MA and MSG

are respectively updated by the MA-updating behavior

(BUA) and MSG-updating behavior (BUSG).

For each row of SPEC-MP, the input/output parameters

(CH(M), CH(U)) of RUE are linked to the corresponding cells

in MA and MBA if CHM 2 MA, or in MSG and MBSG if

CHM 2 MSG. Then in each cycle, each BUA or BUSG exe-

cutes the corresponding RUE instance if the corresponding

buffer cell is not empty.

2.5.3 Collecting behavior

The collecting behavior (BCO) is used for managing the

dependent chunks in MSD of the interactive center. At

t = 0, BCO forms each dependent chunk CHM ¼
fCHUðiÞji 2 ½1;N�g into MSD, where CHU(i) is from MA of

the ith agent. During the runtime, dependent chunks in MSD

are automatically updated if the reference chunks in MA of

any agents are updated.

2.5.4 Submitting behavior

The submitting behavior (BSUB) submits chunks into MBA

and MBSG, given MA, MG, and a updating list EUPD of

genuine chunk identifiers. For each chunk identifier

CHM 2 EUPD, the corresponding row in SPEC-MP is

found, and then a cloned chunk of CHU 2 MA [MG is

submitted into the corresponding buffer cell in MBA or

MBSG if CHM 2 MA or CHM 2 MSG:

2.5.5 Generating behavior

The generating behavior (BGEN) generates a chunk with the

solution property into MG. Based on a given IDG, the

corresponding ESH in SPEC-G is chosen. Then BGEN

executes the RGE instance and generates a chunk CHOG into

MG by using the input chunk list EIG 2 MA [MS:

2.5.6 Meta-managing behavior

The meta-managing behavior (BMM) picks the algorithm

case with a given IDC from SPEC-MM. Afterward, one of

the executive rows in the CGO case is probabilistically

selected, according to the associated CW values. Afterward,

IDG and EUPD in the selected executive row are used as the

inputs for consecutively executing the BGEN and BSUB

behaviors.

2.6 CGO framework: execution process

Algorithm 1 gives the execution process of the CGO

framework. In each line, the working module (entity), the

required inputs, and the outputs or updated modules are

provided.

In Line 1, FP is formulated into FN and FR by forming

the elements hSP;RM:N ;RMðRÞ;AUXi. In Lines 2 and 3, all

long-term memories used by the agents and the interactive

center are initialized by using BINI and BCO. After the

A cooperative group optimization system 477

123

initialization, the CGO framework runs in iterative learning

cycles, in which each learning cycle t 2 ½1; T� is executed

between Lines 5–16.

In Line 5, an option is provided for the facilitator for

updating F
ðtÞ
R by using a chunk in MS. In Lines 7–10, each

agent i 2 ½1;N� is executed. In Line 7, BMM(i) is executed to

select an executive row, which contains IDG and EUPD, in

SPEC-MM. In Line 8, the embedded search heuristic

(ESH), which is named IDG in SPEC-G, is triggered to

generate its output chunk CHOG 2 MGðiÞ by using the list of

input chunks EIG 2 MAðiÞ [MS. In Line 9, the buffer cells

in MBA(i) and MBSG, which are corresponding to the

updating list EUPD in LTMs, are filled by BSUB(i) by using

SPEC-MP. In Line 10, the solution contained in CHOG 2
MGðiÞ is processed by BSK to obtained the best-so-far

solution x��, based on the quality evaluation by using FN.

During Lines 6–11, all LTMs remain unchanged. In Line

12–15, MSG and each MA(i) are independently updated by

BUSG and each BUA(i). Line 16 mentions the fact that MSG is

automatically updated if the corresponding chunks in MA of

agents are updated. Finally, x�� is returned while the

framework is terminated.

2.7 System characteristics

The CGO system has three characteristics: (1) the CGO

framework can support a cooperative group; (2) each agent

holds a customized portfolio of ESHs; and (3) The

framework is driven by a multilayer script working on

knowledge components in the CGO toolbox.

2.7.1 Cooperative group

In principle, the CGO framework can support three kinds

of groups: (1) a nominal group, in which each agent

performs lifetime learning by only using its individual

memory (MA); (2) a stigmergic/evolutionary group, in

which each agent does not possess its MA, but agents can

indirect cooperate with their peers through the social

memory (MS); and (3) a cooperative group, in which each

agent performs a mix of the individual and social learning

by using both MA and MS. Both nominal and cooperative

groups have been used for studying group creativity

(Goncalo and Staw 2006; Paulus 2000).

The cooperative group is an advanced algorithm

designed by natural evolution over millions of years. The

paradigm helps striking a natural balance between exploi-

tation and exploration in the problem landscape. In a

cooperative group, the agents explore in a parallel way

with their individual memory, as well as cooperate with

their peers through the group memory.

For each agent, its individual memory (Ericsson and

Kintsch 1995; Glenberg 1997), i.e., MA, supports its life-

time learning (Curran and O’Riordan 2006), e.g., ‘‘trial-

and-error’’, for discovering novel knowledge based on

experience. A sequence of the chunks (or thoughts; Erics-

son and Kintsch 1995) updated in the same cell can be

regarded as a ‘‘trajectory’’ (Glenberg 1997) along with

learning cycles. An algorithmic example of individual

learning strategies is stochastic local search (Hoos and

Stutzle 2004). In a group, individual learning is essential

for social learning to be useful (Laland 2004), by escaping

from some maladaptive outcomes (Boyd et al. 2011).

For a group of agents, MS might be referred as public

memory (Danchin et al. 2004) or group memory (Dennis

and Valacich 1993; Satzinger et al. 1999). MSD contains

non-private chunks that can be observed from MA of the

agents, whereas MSG contains all genuine chunks that are

not possessed by any agents, e.g., pheromone trails in an

ant colony (Socha and Dorigo 2008) and the group memory

478 X.-F. Xie et al.

123

in brainstorming (Dennis and Valacich 1993). Many ani-

mals and human beings are able to learn socially by

observing their peers and/or utilizing external knowledge

(Danchin et al. 2004; Laland 2004).

Thus, each agent possesses a mixed cultural learning

capability (Boyd et al. 2011; Curran and O’Riordan 2006;

Galef 1995; Tomasello et al. 1993) that operates with both

the individual and social memories. The social memory

contains gradually accumulated and recombined adaptive

knowledge (Boyd et al. 2011) for accelerating the learning

process, whereas the individual memory preserve some

promising minority patterns (Nemeth 1986) for supporting

the capability of escaping from some maladaptive out-

comes (Boyd et al. 2011), which is essential for the social

memory to be useful (Laland 2004). The emergence of

solutions in the group level might also share some essences

with collective intelligence (Woolley et al. 2010).

In each cycle, the agents might be different in not only

the chunks in their MA but also the executive rows picked

by their BMM. Even a nominal group becomes a portfolio of

heterogeneous algorithms (Huberman et al. 1997; Streeter

and Smith 2008), which may achieve better overall per-

formance by exploiting the large variance among the per-

formance of the agents.

Allowing for cooperation among the agents may

improve search performance (Huberman et al. 1997) by

enabling agents to circumvent their own cognitive limita-

tions. Compared to a nominal group, the interaction may

enhance the group creativity (Paulus 2000), as shown in

brainstorming (Dennis and Valacich 1993; Kohn and

Smith 2011).

Compared to a stigmergic group, a cooperative group

has two major features due to the possession of personal

memories by the agents. First, the agents may explore in a

parallel way, while the diversity of positive patterns, even

those in minority (Nemeth 1986), can be preserved in a

more reliable way. Individualism in a group may foster the

group creativity by encouraging uniqueness (Goncalo and

Staw 2006). Second, the cooperative mechanism in a group

needs not to be designed very carefully since the public

information does not have an overwhelming impact on

accumulated knowledge in the system.

For the viewpoint of population-based algorithms,

stigmergic groups, e.g., ES (Runarsson and Yao 2005), GA

(Deb 2000), MA (Ong et al. 2006), ACO (Socha and

Dorigo 2008), and CA (Reynolds et al. 2008), are com-

monly studied, where MS might contains different chunks,

e.g., an evolutionary population (Ong et al. 2006;

Runarsson and Yao 2005, a pheromone matrix (Socha and

Dorigo 2008), and external belief (Reynolds et al. 2008). A

nominal group can be seen as a portfolio (Huberman et al.

1997; Streeter and Smith 2008) of independent local search

agents (Hoos and Stutzle 2004).

Independent local search agents can only use blind

disturbance (Hoos and Stutzle 2004), whereas cooperative

agents can be guided by adaptive clues in the social

memory, when they are trying to escape from some local

valleys in the problem landscape. In a stigmergic group

such as GA, the population diversity must be explicitly

maintained by frequently applying blind disturbance, e.g.,

mutation operators, whereas a cooperative group keeps

novel and diverse states in individual memory of the

agents.

2.7.2 Algorithm portfolios

In the CGO system, each agent holds a portfolio (Huber-

man et al. 1997) of embedded search heuristics (ESHs).

The meta-management behavior can be viewed as a task-

switching schedule (Streeter and Smith 2008) to interleave

the execution of a portfolio (Huberman et al. 1997) of

ESHs across learning cycles. Any executive rows using the

nodes of the same tree in the updatable graph may be

cooperative by default, or they can be turned into cooper-

ative rows by using the customized mode, if necessarily.

The cooperation among ESHs may further improve per-

formance (Huberman et al. 1997). The cooperative algo-

rithm portfolio is strengthened in the cooperate group,

since novel cooperation results can be easily diffused

though the group memory, and detrimental results might be

isolated in individual memory of agents.

From a user-oriented perspective, the practical problem

sets are different during different periods for different

users. According to the No Free Lunch (NFL) theorems

(Wolpert and Macready 1997), it is impossible to obtain an

omnipotent algorithm case for a sufficiently diverse set of

problem instances. Thus, it is rational to tackle the problem

set faced by each user during a sufficiently long period, by

using a portfolio of fast-and-frugal heuristics. New heu-

ristics, which mainly tackle some of new problems

unsolved by existing heuristics, can be implemented into

the portfolio over time.

According to its E(IG), each ESH might possess one of

the four search properties: (a) scratch search, which has

EðIGÞ ¼£; (b) individual learning, which only uses the

chunks in MA; (c) social learning, which only uses the

chunks in MSG; and (d) cultural learning (or socially-

biased individual learning; Galef 1995), which employs

the input chunks in both MA and MS. In principle, the

agents in a cooperative group might use mixed strategies,

as long as cultural learning strategies play a nontrivial role.

For example, in GSO (He et al. 2009), only scroungers use

a cultural learning strategy, whereas producers and rangers

employ individual learning strategies.

There is a basic paradigm shift in supporting the

algorithm space. Traditional methods mainly use the

A cooperative group optimization system 479

123

space of setting parameters for tuning/controlling the

algorithm performance (Eiben et al. 1999). Each algo-

rithm with setting parameters might support a huge

algorithm space, but only a few algorithm cases are

competent for some problem instances. The number of

useful algorithm cases might be dropped to much less if

the overlap among the performance of different algorithm

cases is considered. The CGO algorithm space is mainly

defined upon a portfolio of basis ESHs, in which each

ESH is competent, which captures explicit/implicit

domain-specific features, for some problem instances.

Furthermore, CGO cases can be defined in an independent

or cooperative way to stretch for solving most problem

instances. Moreover, allowing heterogeneous inputs/out-

puts increases the chance of finding competent ESHs. The

total portfolio size can be maintained to be small by

adding new ESHs that are competent for new problems as

well as removing obsolete ESHs.

2.7.3 Multilayer script

The CGO system is a development framework that is dri-

ven by an multilayer script. This is essential for supporting

the vision of the adaptive box, since implementing many

stand-alone search heuristics might require quite an effort,

let alone flexibly supporting the cooperative search among

heterogeneous search heuristics that are sharing custom-

ized memory elements.

In the upper three layers of the CGO script, each layer

contains some elemental rows. A new row can be added

into a layer to provide more choices for implementing new

rows into higher layers; and an old row can be removed

from a layer if it is not used by any higher layers. Thus, any

competent knowledge components can be easily accumu-

lated, whereas obsolete knowledge component can be

easily removed, without leading to any risk to interfere

existing algorithm cases.

Each layer might provide nontrivial knowledge for the

higher layer. SPEC-MP forms a simple memory protocol

ontology for the interaction between the agents and the

interactive center. The corresponding updatable graph is

not only useful for checking the validity of SPEC-MP, but

also for defining feasible input/output chunks for each

ESH. SPEC-MP also provides a nontrivial support for the

stability of cooperative search among different ESHs. The

actual performance of each ESH in SPEC-G provides

essential knowledge for designing promising portfolios

(Huberman et al. 1997; Streeter and Smith 2008) in

SPEC-MM.

The implementation process may mainly occur in

higher levels, once there are enough supports from lower

layers. Eventually, almost all operations will take place in

SPEC-MM for finding suitable portfolios, either coopera-

tive or not, if a sufficiently large number of ESHs are

implemented.

3 Implementation for constrained optimization

For each problem FP of a specific type, the CGO system

can be concretely implemented. Here the constrained

optimization problem is used for demonstrating the

implementation process. We first introduce the problem,

then describe problem-specific algorithmic components.

Here we provide full details of these components for easily

reproducing the algorithms, but it might be worthy to keep

in mind that each component is a binary object with spe-

cific input/output parameters for end users.

3.1 The constrained optimization problem

THe FP of the constrained optimization problem can be

defined as follows (Deb 2000):

Minimize : f ðxÞ
Subject to : gjðxÞ 2 ½cj;�cj�R ðj 2 ½1; J�

Z
Þ

(

ð1Þ

in which x ¼ ðx½1�; . . .; x½D�Þ 2 SP � R
D is a state within the

space SP which is a D-dimensional Euclidean space with

the boundary constraints x½d� 2 ½x½d�;�x½d��R for 8d 2 ½1;D�
Z
;

f ðxÞ is the objective function, and each gj (x) is a constraint

function with two constant boundary values cj and

�cjðcj��cj). The feasible space SPF is defined as SPF = fxj
gjðxÞ 2 ½cj;�cj�R; 8j 2 ½1; J�Z; x 2 SPg. Any solutions in

SPO are located in SPF, by treating all constraints as hard

constraints. We define �cmin ¼ minJ
j¼1ð�cj � cjÞ for conve-

nience. If cj � �cj, the jth constraint is called an equality

constraint, which is preprocessed into a relaxed form by

using gjðxÞ 2 ½cj � eH ;�cj þ eH � with a tolerance parameter

�H [0.

3.2 Quality measurement

The quality measurement is a macro subtype, i.e., RM =

hRV2
QE;RQCi, which is realized as

RMðxðaÞ; xðbÞÞ ¼ RQC RV2
QE xðaÞ;R

V2
QEðxðbÞ

� �� �
ð2Þ

in which the quality-encoding (RV2
QE) rule is a background

rule that calculates the intermediate quality of the only input

state into a commonly-used data structure (vCON ; vOBJ), then

the quality-comparing rule (RQC) evaluates any two

(vCON ; vOBJ) instances and returns TRUE or FALSE.

480 X.-F. Xie et al.

123

For RV2
QEðxÞ, the output element vOBJ is equal to the

objective function value f(x), and the output element vCON

is the summarized constraint violation value, i.e.,

vCON ¼
XJ

j¼1

0 IF gjðxÞ 2 ½cj;�cj�R
cj � gjðxÞ IF gjðxÞ\cj

gjðxÞ � �cj IF gjðxÞ[�cj

8
<

:
ð3Þ

Thus, the minimum value of vCON is 0. For V x, if there

is vCON : 0, then it means x 2 SPF .

3.2.1 Existing quality comparison rules

A basic usage is that various existing constraint-handling

techniques may be realized by using different RQC rules.

A RQC rule (RO
QC) returns TRUE, if there is:

(a) vCONðaÞ\vCONðbÞ; or (b) vCONðaÞ � vCONðbÞ and

vOBJðaÞ � vOBJðbÞ . The RO
QC rule satisfies the following criteria

(Deb 2000): (a) xðaÞ 2 SPF is preferred to xðbÞ 62 SPF;

(b) between two states within SPF, the one having a smaller

objective function value is preferred; (c) between two

states out of SPF, the one having a smaller constraint vio-

lation is preferred. It has been widely used in some existing

work (Lu and Chen 2008; Mezura-Montes and Coello

2005; Zhang and Xie 2003).

The penalized RQC rule (RP
QC) returns TRUE, if there is

vall(a) B vall(b), in which vall ¼ vOBJ þ CAP 	 vCON and

CAP C 0 is a static penalty coefficient. The static penalty

term has been used as a popular technique (Deb 2000).

However, deciding a good penalty coefficient for each

specific problem instance might be a rather difficult opti-

mization problem itself.

The stochastic RQC rule (RS
QC) returns TRUE, if there is:

(a) vCONðaÞ\vCONðbÞ; or (b) vOBJðaÞ � vOBJðbÞ as vCONðaÞ �
vCONðbÞ or UR\CPF , in which CPF 2 ½0; 1�R is a setting

parameter. This rule is used in the stochastic ranking

technique (Runarsson and Yao 2005).

The static-relaxing RQC rule (RRS
QC) returns TRUE, if

there is: (a) vCONðaÞ\vCONðbÞ as vCONðbÞ[CER; or

(b) vOBJðaÞ � vOBJðbÞ as both vCONðaÞ; vCONðbÞ �CER. Here

CER C 0 is a relaxing value.

A dynamic-relaxing RQC rule is then defined as a tuple

hRRS
QC;RADJi, where the adjusting rule (RADJ) dynamically

adjusts the CER value of RRS
QC (Hamida and Schoenauer

2002; Xie and Zhang 2004).

Among these RQC rules, only RO
QC leads to a natural

landscape. However, the SPF of a natural landscape is

critically shaped by the boundary values of constraint

functions. If the �cmin value of FP is not large enough, SPF

may be long and narrow valleys, which can be divided into

multiple segments of the ridge function class (Beyer 2001)

of unknown directions. Searching in such valleys is very

challenging since improvement intervals (Salomon 1996)

toward better solutions are predominantly too small.

For a landscape with the RRS
QC rule, its quasi-feasible

space is S0PF ¼ fxjvCONðxÞ�CER; x 2 SPg
 SPF . A good

attribute is that S0PF always shrinks when CER decreases,

till S0PF ! SPF for CER ! 0. To increase improvement

intervals and to approach the optimum from both feasible

and infeasible space, it is rational to sufficiently relax S0PF

at the early stage and gradually shrinks S0PF to SPF, by

adjusting the CER value of RRS
QC from large to small,

during the run-time. Some dynamic adjustment techniques

have been proposed (Hamida and Schoenauer 2002; Xie

and Zhang 2004). The basic experience is that the

adjustment pace is a key issue for the performance. In the

next section (Sect. 3.2.2), we will consider a slightly

modified adjusting rule for maintaining a controllable

adjustment pace.

Some of these RQC rules, including RO
QC;R

P
QC;R

S
QC , and

the dynamic adjustment method in (Hamida and Scho-

enauer 2002) have been used in existing algorithms dis-

cussed in Sect. 4.2.1.

3.2.2 Adaptive ratio-reaching adjustment

The ratio-reaching RADJ rule (RRR
ADJ) adjusts C

ðtÞ
ER by using

the �cmin value of FP and the maximum number of cycles

(T). Furthermore, it has four setting parameters:

CRRE, CRNU, CRTU, and an input state set called $xFB. For

convenience, we define tTH = INT(CRTU 	 T), in which

CRTU 2 ½0; 1�R and the function INT(t) returns the closest

integer value of its input t.

There are C
ð0Þ
ER ¼ 0 and C

ð1Þ
ER is set as the maximum

vCONvalue (Xie and Zhang 2004) of all the states in $xFB .

As t [tTH, there is C
ðtÞ
ER = 0 (Xie and Zhang 2004). Thus

there are totally (T - tTH) learning cycles left for fulfilling

the final search process in SPF. For 1 B t B tTH, if

c
ðtÞ
RNC [CRNU , there is

C
ðtþ1Þ
ER ¼ C

ðtÞ
ER 	 cERE=C

ðtÞ
ER

� �1=ðtTH�tþ1Þ
ð4Þ

in which CRNU 2 ½0; 1�R; c
ðtÞ
RNC is the ratio of the states

within the current S0PF over all the states in $xFB (Hamida

and Schoenauer 2002), cERE ¼ CRRE 	 �cmin=2 is an expected

value of C
ðtTHÞ
ER , and CRRE is a positive constant.

Compared to the previous methods (Hamida and Scho-

enauer 2002; Xie and Zhang 2004), the minor modification

in Eq. 4 aims in keeping a stable c
ðtÞ
RNC value, while main-

taining an adaptive pace for adjusting C
ðtÞ
ER to the expected

cERE value at t = tTH.

A cooperative group optimization system 481

123

3.2.3 Incorporate global knowledge

The equality constraints can be seen as a typical problem

feature that is known in advance. The RO3R
QC rule is a macro RQC

rule integrating RO
QC and RRRR

QC ¼ hRRS
QC;R

RR
ADJi by a simple

policy, i.e., RRRR
QC is executed if �cmin� 2 	 eH , otherwise RO

QC is

executed. Thus problem instances with and without equality

constraints are tackled by the RRRR
QC and RO

QC rules, respectively.

3.3 The facilitator

Based on FP, the facilitator is implemented from a tuple,

i.e., hSP;RM:N ;RMðRÞ;AUXi, where the RM:N rule in FN and

the RM(R) rule in FR are respectively realized as hRV2
QE;R

O
QCi

and hRV2
QE;RQCðRÞi (based on Eq. 2), and AUX only contains

the D-dimensional Euclidean space SP defined by the

boundary constraints.

Here AUX is represented in a concise form. Following a

practical setting of black-box optimization, no function

details and gradient information are considered. The detail

information of function values for candidate states and the

boundary values for all constraint functions are encapsu-

lated in the RM(R) rule.

For the facilitator, only RQC(R) can be assigned, but a

high flexibility is still retained since RQC(R) can be realized

in various forms (e.g., different RQC rules defined in Sects.

3.2.1 and 3.2.3).

3.4 Elemental generating rules

Three RGE rules are extracted from existing algorithms. In

addition, boundary-handling methods are integrated into

RGE rules according to available knowledge.

3.4.1 Differential evolution RGE rule

The differential-evolution RGE rule (RDE
GE) is extracted from

differential evolution (DE) (Price et al. 2005). Its E(IG) has

two chunks, i.e., fxP; $xDPg. Its setting parameters include

CF, CCR, and CCG, in which CCR 2 ½0; 1�R is the crossover

constant, CF [0 is the scale constant.

The RDE
GE rule generates one state xC as its CH(OG) by

using the following steps:

(a) Create a list of states, i.e., {x(a), x(b), x(c), x(d)}, by

selecting from $xDP at random;

(b) Obtain cDR, which is randomly chosen from [1, D];

(c) For the dth dimension, if UR\CCR or d : cDR,

xC½d� ¼ xðPÞ½d� þ CCG 	 xðgÞ½d� � xðPÞ½d�
� �

þ CF 	 xðaÞ½d� � xðbÞ½d� þ xðcÞ½d� � xðdÞ½d�
� � ð5Þ

in which xðgÞ ¼ RG
SELð$xDPÞ (defined in Sect. 2.3.1) is the

state with the best quality in $xDP, and CCG 2 ½0; 1� is the

ratio between xP[d] and x(g)[d]. Here xC is respectively

generated around x(g) and xP, if CCG is assigned as 1 and 0.

Its boundary-handling method is realized in a simple

way: for the dth dimension, xC[d] is randomly chosen from

½x½d�;�x½d��R if there is xC½d� 62 ½x½d�;�x½d��R.

3.4.2 Particle swarm RGE rule

The particle swarm RGE rule (RPS
GE) is extracted from the

operation of each particle in PSO (Kennedy et al. 2001). Its

E(IG) possesses four input chunks, i.e., fxO; xR; xP; $xDPg,
and its CH(OG) is xC. Furthermore, its setting parameters

include CA [2 and CB [2.

For the dth dimension, xC is generated as

xC½d� ¼ xR½d� þ cK 	 DISðxR½d�; xO½d�; dÞ
þ CA 	 UR 	 DIS xP½d�; xR½d�; d

� �

þ CB 	 UR 	 DIS xðgÞ½d�; xR½d�; d
� �

ð6Þ

in which cK ¼ 2=ð
ffi
u 	 ðu� 4Þ

p
þ u� 2Þ;u ¼ CAþ

CB [4; xðgÞ is the state with the best quality in $xDP;UR

is a real value randomly selected in [0, 1]R, and

DIS(x(a), x(b), d) calculates the distance between x(a) and

x(b) at the dth dimension of SP (Xie and Liu 2005), i.e.,

DISðxðaÞ; xðbÞ; dÞ ¼
�x½d� þ y IF y\� �x½d�=2

�x½d� � y IF y [�x½d�=2

y OTHERWISE

8
<

:
ð7Þ

in which �x½d� ¼ �x½d� � x½d� and y = x(a) - x(b).

Finally, xC[d] is repaired for 8xC 62 SP (Xie and Liu

2005), i.e.,

xC½d� ¼
�x½d� � ðx½d� � xC½d�Þ%�x½d� IF xC½d�\x½d�
x½d� þ ðxC½d� � �x½d�Þ%�x½d� IF xC½d�[�x½d�

�

ð8Þ

3.4.3 Social cognitive RGE rule

The social cognitive RGE rule (RSC
GE) is extracted from the

operation of an agent in social cognitive optimization

(SCO) (Xie et al. 2002). Its E(IG) possesses two inputs

chunks, i.e., fxR; $xGRg, and one output chunk, i.e., xC.

Furthermore, RSC
GE has only one setting parameter of the

integer type, i.e., CNTB [0. The basic idea is to learn from

a good model state in a public knowledge pool.

The RSC
GE rule produces xC using the following steps:

(a) Select a model state xðmÞ from $xGR, by using the RTS
SEL

rule (as defined in Sect. 2.3.1) with the setting

parameter values CNTS = CNTB and CBQ = TRUE;

482 X.-F. Xie et al.

123

(b) Determine two states x(b) and x(r) from xR and x(m): If

RM(R) (x(m), xR) : TRUE, then x(b) = x(m) and

x(r) = xR, otherwise x(b) = xR and x(r) = x(m);

(c) Obtain the virtual promising space, called Spv, which

takes x(b) as the center, and uses x(r) to determine its

range. For the dth dimension of x 2 Spv, and

x(br)[d] = |x(b)[d] - x(r)[d]|, there is,

x½d� 2 xðbÞ½d� � xðbrÞ½d�; xðbÞ½d� þ xðbrÞ½d�
� 	

R
; ð9Þ

(d) Generate xC within Spv\ SP at random.

3.5 Implementation of CGO script

The CGO script is implemented over algorithmic compo-

nents that are defined in previous sections: some generic

components are defined in Sect. 2.3, whereas problem-

specific components are defined in Sects. 3.2 and 3.4. Each

setting parameter of a component instance is fixed, unless it

is specially assigned as an overall script parameter. For

simplicity, the script is shown in tables, but it can be easily

converted into a standard format, e.g., extensible markup

language (XML).

For the facilitator (realized in Sect. 3.3), SPEC-F is simply

defined by assigning an RO3R
QC instance (realized in Sect. 3.2.3)

as RQC(R) in its RM(R). For the RRR
ADJ instance in RRRR

QC , its

parameters include CRRE = 10, CRNU = 0.5, CRTU = 0.5,

and $xFB ¼ $xDP 2 MS (defined later in SPEC-MP).

Table 2 lists the elemental rows in SPEC-MP, for

MA ¼ fxO; xR; xPg;MSG ¼ f$xGRg;MSD ¼ f$xDPg, and

MG = {xC}. Here the primary chunk interfaces include

x and $x. For j$xGRj, the number of states is CNGR ¼ 4 	 N.

All genuine chunks are initialized by RRND
IE:X . The dependent

chunk is $xDP ¼ fxPðiÞji 2 ½1;N�g, in which xP(i) is in MA

of the ith agent. For illustrative purposes only, the corre-

sponding updatable graph, which contains a single tree, is

also shown in Table 2.

As shown in Table 3, SPEC-G contains four

embedded search heuristics (ESHs), in which each ESH

has a IDG, an RGE instance with setting parameter

values, and the lists of input/output parameters EIG and

CHOG. Both G.DE1 and G.DE2 use RDE
GE instances,

while G.PS and G.SC uses RPS
GE and RSC

GE instances,

respectively. Besides, G.SC uses one chunk in MSG,

while the others uses one chunk in MSD. For each ESH,

its EIG contains the nodes in a sub-graph of the upd-

atable graph in Table 2. All the four ESHs use both MA

and MS elements in their EIG. For illustrative purposes

only, the lists of all active genuine chunks, i.e., EIGG, is

also shown in Table 3.

Table 4 lists seven CGO cases. All of them are

defined on four executive rows, in which each executive

row is associated with a generative row in SPEC-G,

according to its IDG. Columns 2–5 in Table 4 include

the updating lists in EIGM ¼ fxO; xR; xP; $xGRg. All ESUB

lists are defined in the default mode, and the elements in

each ESUB (i.e., the corresponding EIGG elements shown

in Table 3) are marked by ‘‘H’’. In the last seven col-

umns, the seven CGO cases with different IDC, i.e., #PS,

#DE1, #DE2, #SC, #DEDE, #DEPS, and #DESC, are

defined by assigning with different CSV values for the

four executive rows, in which each executive row is not

actually used if the corresponding CSV value is 0. Thus,

the first four cases only use a single executive row,

whereas the last three cases use two executive rows in

the equal probability.

Table 3 The generative rows in

SPEC-G and the corresponding

EIGG lists

IDG RGE instance EIG CHOG EIGG

G.PS RPS
GE : CA ¼ CB ¼ 2:05 fxO; xR; xP; $xDPg xC {xO, xR, xP}

G.DE1 RDE
GE : CF ¼ 0:5;CCR ¼ 0:1;CCG ¼ 1:0 fxP; $xDPg xC {xP}

G.DE2 RDE
GE : CF ¼ 0:5;CCR ¼ 0:9;CCG ¼ 1:0 fxP; $xDPg xC {xP}

G.SC RSC
GE : CNTB ¼ 2 fxR; $xGRg xC fxR; $xGRg

Table 2 The memory protocol rows in SPEC-MP and the corresponding updatable graph

IDM CHM RIE instance RUE instance CHU Updatable graph

MA xO RRND
IE:X RD

UE:S xR

MA xR RRND
IE:X RD

UE:S xC

MA xP RRND
IE:X RG

UE:S
xC

MSG $xGR : CNGR ¼ 4 	 N RRND
IE:X RTS

UE:X : CNTW ¼ 4 xR

MSD $xDP – – xP

A cooperative group optimization system 483

123

Table 5 describes the #DESC-I case, in which only both

G.DE2 and G.SC are actually used, and the ESUB lists are

specified in the customized mode. Compared to #DESC,

two additional elements, i.e., xR for G.DE2 and xP for

G.SC, are marked by ‘‘
p

’’. The two executive rows are

independent in #DESC, but cooperative in #DESC-I. Thus

the customized mode provides an additional dimension for

further designing new algorithms with additional cooper-

ative rows. Such a cooperation may facilitate for the search

process of other embedded search heuristics (ESHs).

Each CGO case is designated by IDC and a few setting

parameters. In the current script, there are only two

parameters, i.e., the number of agents (N) and the maxi-

mum number of cycles (T).

3.5.1 Informal execution process

Here an informal description is provided for the actual

execution of the #DESC-I case in Table 5. The formal

description of the executionc an be found in Sect. 2.

For an agent i, both rows G.DE2 and G.SC in SPEC-

MM (Table 5) have the same probability to be selected by

BMM(i). Here we assume that G.SC is selected in the current

cycle. Thus there are IDG = G.SC, and EUPD ¼
fxR; xP; $xGRg. With IDG, BGEN locates the fourth row in

SPEC-G (Table 3), and executes the RSC
GE instance with

EIG ¼ fxR; $xGRg from MA(i) and MS and CHOG = xC to

MG(i). Afterward, the elements in EUPD are processed by

BSUB, based on the corresponding rows in SPEC-MP

(Table 2). For example, CHU = xC is sent to the cell in the

buffer MBA(i) that is used for update xPðiÞ 2 MAðiÞ, and

CHU = xR is sent to the cell in the buffer MBSG that is used

for update $xGR 2 MSG. Note that MBSG might receive

chunks from different agents. At the end of the cycle, each

buffer cell with new content will be used to update the

corresponding LTM cell by the corresponding RUE rule

defined in SPEC-MP (Table 2).

At next cycles, G.DE2 and G.SC in SPEC-MM might be

interactively selected. As we can see, G.SC only use two

elements, i.e., EIG ¼ fxR; $xGRg, but it updates three ele-

ments, i.e., EUPD ¼ fxR; xP; $xGRg. The extra update is

marked by ‘‘
p

’’ in Table 5, and it will only have an impact

when xP serves as an input chunk element for G.DE2.

3.6 Discussion

We have described the solid implementation of various

CGO cases. Given the CGO framework, the implementa-

tion process including two parts, i.e., realize algorithmic

components in the toolbox, and organize the instances of

these components by the script. There are only a few

components in the toolbox. In Table 2, we have two gen-

eric chunk types, i.e., x and $x, a few generic rules, i.e.,

RRND
IE:X ;R

D
UE:S;R

G
UE:S, and RTS

UE:X . These generic components

might be used across different problem types. In Table 3,

we have three problem-specific rules, i.e., RPS
GE;R

DE
GE, and

RSC
GE.

The memory protocol ontology is defined on a few

chunks. Based on the position and corresponding updating

process in the updatable graph, nontrivial properties may

emerge for these chunks. In the individual memory of each

agent, xO, xR, and xP are the best state found so far, the

most recently found state, and the state found in the last

cycle, respectively. In the group memory, $xDP is the

collection of elite states found by the agents, and $xGR is a

steady-state set.

The primary advantage is to define different apparent

stand-alone algorithms in an efficient way. For the ESHs,

G.PS is a PSO instance, G.DE1 and G.DE2 are two DE

instances, and G.SC is a SCO instance. Different instances

of a single rule (e.g., RDE
GE) might be included in SPEC-E.

To develop new algorithms, the main effort is put on

realizing RGE with heterogeneous EIG and CHOG. Some

Table 4 Seven CGO cases supported by SPEC-MM, where EUPD 2 EIGM ¼
S

EIGG ¼ fxO; xR; xP; $xGRg, and each CGO case has its name IDC

(e.g., #PS) and its set of CW values in the corresponding column

IDG xO xR xP $xGR #PS #DE1 #DE2 #SC #DEDE #DEPS #DESC

G.PS H H H 1 0 0 0 0 1 0

G.DE1 H 0 1 0 0 1 0 0

G.DE2 H 0 0 1 0 1 1 1

G.SC H H 0 0 0 1 0 0 1

Table 5 The executive rows of SPEC-MM for #DESC-I, an cus-

tomized CGO case (‘‘H’’ indicates additional elements)

IDG xO xR xP $xGR #DESC-I

G.PS H H H 0

G.DE1 H 0

G.DE2 H H 1

G.SC H H H 1

484 X.-F. Xie et al.

123

possible RGE subtypes that include common algorithmic

operators (e.g., recombination, mutation, and local search)

are discussed in Sect. 2.3.4. For example, Step c of RSC
GE can

be viewed as a recombination operator. Furthermore, as

discussed in Sect. 2.7.2, some ESHs might not necessarily

be cultural learning strategies (i.e., RGE uses inputs in MA

and MS). For example, a single-start (e.g., local search and

mutation) search rule and the RRND
GE rule might be respec-

tively added to Table 3 using EIG={xP} and EIG ¼£,

given CHOG = xC. We might also change the realization of

an ESH by changing the chunks used in its EIG and CHOG.

For example, G.SC might turn into a totally different

algorithm if it uses the EIG of G.DE2.

Moreover, hybrid CGO cases can be formed in a com-

binatorial algorithmic space formed by using a portfolio of

user-oriented ESHs as basis, without writing any additional

code. Here #DEDE, #DEPS, and #DESC, are defined in the

default mode, and #DESC-I is defined in the customized

mode. We have only considered the customized mode in an

expanded style that adds additional elements into the EUPD

lists. The customized mode might be more flexible, as long

as it follows the basic principle that any elements in EIGM

can be probabilistically updated. The ability of supporting

a large algorithmic space offering algorithm designers

quick turnaround in realizing hybrid CGO cases. The

portfolio design might be guided using the offline perfor-

mance of individual ESHs accumulated over time.

4 Experimental results

The experiments are performed on thirteen widely-used

benchmark instances (G01–G13) (Runarsson and Yao

2005) originating from real-world applications. Table 6

summarizes the diverse characteristics of the benchmark

instances (Runarsson and Yao 2005). Four of the instances,

i.e., G03, G05, G11, and G13, have equality constraints. By

default, the tolerance value for each equality constraint is

�H = 1E-4.

The algorithm performance is measured on the mean

results under given numbers of function evaluations (NFE).

For each CGO case, its NFE is approximately equal to

N 	 T , since the evaluation times in t = 0 can be neglected

if T is large enough. For each problem instance, 500

independent runs were performed for obtaining the mean

results. Furthermore, only the runs that entered SPF are

taken into accounted, and the number of runs that did not

enter SPF is reported in parentheses.

For an algorithm case, a problem instance is regarded as

solved if the difference between the mean result and the

optimal value is smaller than 1E-5 (except for G08 and

G13, which are 1E-6). All the solved results listed in

following tables are emphasized in boldface. As

comparing sub-optimal results with different algorithms

(shown in Tables 10, 11, and 15), each existing result is

simply underlined if it has no statistically significant dif-

ference from the corresponding #DESC-I result at 95 %

confidence level, based on Welch’s t test.

4.1 Algorithm selection

The selection process is based on the two insights in

algorithm portfolio design (Huberman et al. 1997). For all

tests in Sect. 4.1, there are N = 60 and T = 2,000, and

NFE is 1.2E4.

Table 7 summarizes the mean results by four pure CGO

cases, i.e., #DE1, #DE2, #PS, and #SC, in which each case

uses a single ESH. Here some nontrivial knowledge about

the competency of the corresponding ESHs may be

obtained from their offline performance.

For the instances without equality constraints, the f*1

values are the true optimal solutions. For those instances

with equality constraints, the f*1 values are the optimal

solutions obtained as �H = 1E-4.

As shown in Table 7, #DE1, #DE2, #PS, and #SC

consistently achieved the optimal solutions in six, eleven,

five, and five of the instances, respectively. #DE2 achieved

the best search performance among the four CGO cases.

For the two instances G01 and G02, DE1 and #SC were

able to achieve very good results, whereas #DE2 and #PS

did not obtain good enough results.

Table 8 gives the mean results by #DEDE, #DEPS,

#DESC, and #DESC-I, in which each hybrid case

employs two ESHs. Here #DEPS is included since it

represents an existing algorithm called DEPSO (Zhang

Table 6 Summary of main characteristics of the benchmark instan-

ces (Runarsson and Yao 2005): [linear inequality (LI), nonlinear

equality (NE), nonlinear inequality (NI), and the number of active

constraints at optimum (NA)]

FP D f(x) type |SPF|/|SP| (%) LI NE NI NA

G01 13 Quadratic 0.011 9 0 0 6

G02 20 Nonlinear 99.990 1 0 1 1

G03 10 Polynomial 0.000 0 1 0 1

G04 5 Quadratic 52.123 0 0 6 2

G05 4 Cubic 0.000 2 3 0 3

G06 2 Cubic 0.006 0 0 2 2

G07 10 Quadratic 0.000 3 0 5 6

G08 2 Nonlinear 0.856 0 0 2 0

G09 7 Polynomial 0.512 0 0 4 2

G10 8 Linear 0.001 3 0 3 3

G11 2 Quadratic 0.000 0 1 0 1

G12 3 Quadratic 4.779 0 0 93 0

G13 5 Exponential 0.000 0 3 0 3

A cooperative group optimization system 485

123

and Xie 2003). For #DESC-I, the standard deviation (St.

Dev.) is provided.

All the four hybrid cases achieved the optimal solutions for

ten instances, which may mean that they inherited most of the

merit from G.DE2. Moreover, they all achieved better results

than #DE2 for both G01 and G02. The portfolio may benefit

from the negative correlation among the performance of

individual algorithms (Huberman et al. 1997). Besides, both

DESC and DESC-I performed better results than #DEDE in

G01 and G10, and #DEPS in G01 and G02, respectively.

For the four instances with equality constraints, Table 9

gives the optimal solutions (f*2) and the mean results

obtained by three CGO cases, i.e., #DE, #DESC, and

#DESC-I, as the allowed tolerance value is reduced to

�H = 1E-8. All the three CGO cases found the optimal

solutions for G03 and G11. Furthermore, #DE2 and

#DESC-I respectively found the optimal solutions for G05

and G13. For G05, the result of #DESC-I was slightly

worse than the optimal solution, but it achieved a much

better result than #DE2.

For an instance with equality constraints, a smaller �H

leads to a more accurate optimal solution. Compared to the

real optimal solutions as �H = 0, the f*2 results are the

same, whereas the f*1 results still have the differences that

are not negligible, under the given arithmetic precisions. It

is meaningful that #DESC-I was able to achieve near-

optimal solutions for all the four instances, even as the

using of a smaller �H might significantly increase the

problem difficulty.

For the instances with equality constraints, FR is

adjusted dynamically by using a dependent chunk, i.e.,

$xDP. In #DESC, only one executive row, i.e., G.DE2, may

update xP, which is a root chunk of $xDP, in the MA of each

agent. Thus the progress of the other executive row, i.e.,

Table 7 Results by four pure CGO cases using a single ESH

FP f*1 #DE1 #DE2 #PS #SC

G01 -15.00000 215.00000 -14.78906 -14.90595 215.00000

G02 -0.80362 -0.80091 -0.62628 -0.64812 -0.79764

G03 -1.00050 -0.99493 21.00050 -1.00045 N/A

G04 -30,665.5387 230,665.5387 230,665.5387 230,665.5387 230,665.5387

G05 5,126.49671 (500) 5,126.49671 5,137.3522(8) N/A

G06 -6,961.81388 26,961.81388 26,961.81388 26,961.81388 26,961.81388

G07 24.30621 24.79860 24.30621 25.14686 24.41236

G08 -0.095825 20.095825 20.095825 20.095825 20.095825

G09 680.63006 681.03268 680.63006 680.65376 680.64244

G10 7,049.24802 7,211.44153 7,049.24802 7,456.49008 7,166.74353

G11 0.74990 0.74990 0.74990 0.74990 N/A

G12 -1.00000 21.00000 21.00000 21.00000 21.00000

G13 0.053942 (500) 0.053942 0.073435 N/A

Relaxed optimal values are italicized (which are obtained in the relaxed setting epsilon = 1E-4)

Table 8 Results by four hybrid CGO cases using two ESHs

FP #DEDE #DEPS #DESC #DESC-I St. dev.

G01 -14.99531 -14.96719 215.00000 -14.99997 2.205E-05

G02 -0.79712 -0.69590 -0.79287 -0.79006 1.255E-02

G03 21.00050 21.00050 21.00050 21.00050 1.489E-10

G04 230,665.5387 230,665.5387 230,665.5387 230,665.5387 2.942E-10

G05 5,126.49671 5,126.49671 5,126.49671 5,126.49671 9.346E-12

G06 26,961.81388 26,961.81388 26,961.81388 26,961.81388 3.277E-11

G07 24.30621 24.30621 24.30621 24.30621 3.305E-07

G08 20.095825 20.095825 20.095825 20.095825 5.835E-16

G09 680.63006 680.63006 680.63006 680.63006 2.855E-12

G10 7,049.24822 7,049.24812 7,049.24812 7,049.24813 1.370E-04

G11 0.74990 0.74990 0.74990 0.74990 6.001E-15

G12 21.00000 21.00000 21.00000 21.00000 0.000E-00

G13 0.053942 0.053942 0.053942 0.053942 2.114E-16

486 X.-F. Xie et al.

123

G.SC, is totally ignored. Actually, #DESC did not find

better results than #DE2. However, in #DESC-I, G.SC

updates xP, while G.DE2 updates xR as well. Such a mutual

interaction ensures that the search progress of both the

executive rows are taken into account. As shown in

Table 9, #DESC-I was able to achieve a much better result

than #DE2 in G13.

The difference between #DESC and #DESC-I is in that

the two ESHs in #DESC are independent, whereas in

#DESC-I they are cooperative due to the additional

updating elements. Compared #DESC-I to #DESC, such an

interaction significantly enhanced the performance for G05

and G13, as shown in Table 9. Thus, for an algorithm

portfolio, the overall performance might be further tuned

through low-level cooperative search among individual

algorithms (Huberman et al. 1997).

4.2 Comparison with existing algorithms

The performance of two CGO cases, i.e., #DESC-I:S and

#DESC-I:L, was compared to that of existing algorithms.

For the two CGO cases, #DESC-I:S has N = 50 and

T = 1,000, and thus its NFE is 5.0E4; while #DESC-I:L

has N = 70 and T = 3,000, and thus its NFE is 2.1E5.

4.2.1 Existing algorithms

Here we briefly describe basic features of ten algorithms,

including their diverse algorithmic types and constraint-

handling techniques (some of them can be represented by

RQC rules discussed in Sect. 3.2.1). For more details, please

refer to corresponding literature.

GASAFF (Farmani and Wright 2003) is a GA with the

self-adaptive fitness formulation. Specifically, each indi-

vidual is assigned an infeasibility value, i.e., the normal-

ized sum of all constraint violation values, and the two-

stage penalty functions are then applied in relation to

boundary solutions.

OEA (Liu et al. 2007) is an organizational evolutionary

algorithm. The individuals in a population are structured

into some organizations, in which all evolutionary opera-

tions are applied for simulating the interaction among the

organizations. For handling constraints, the static penalty

term RP
QC, which uses the penalty coefficient tuned for each

problem instance, is considered.

CDE is a cultured differential evolution (Becerra and

Coello 2006), i.e., a CA algorithm hybridized with a DE

population, or a DE algorithm integrated with a belief

space of CA. In CDE, CA uses the external knowledge in

its belief space to influence the DE search operations. Its

constraint-handling method can be regarded as the natural

quality measurement using the RO
QC rule.

PSOSAV, or called SAVPSO (Lu and Chen 2008), is a

PSO variant, in which each particle adjusts its velocity self-

adaptively, according to the run-time information, for

searching within SPF. Its constraint-handling method can

be described by the quality measurement using RO
QC:

SIMPa, or called aSimplex (Takahama and Sakai 2005),

is an a-constrained simplex method. The a-constrained

method uses a satisfaction level in order to indicate how

well a search point (state) satisfies the constraints. The

simplex method uses multiple simplexes to avoid the sit-

uation that a single simplex might lose its affine indepen-

dence. For each simplex, the worst point is mutated, either

by a boundary mutation if the point is feasible, or by

another mutation to increase the satisfaction level of the

point. The a-level is dynamically increased for the problem

instances with equality constraints.

ESATM, or called ATMES (Wang et al. 2008), integrates

a (l, k)-ES with a constraint-handling method called

adaptive tradeoff model, which tries to achieve a good

tradeoff between feasible and infeasible spaces during

different stages of a search process, by taking advantage of

the valuable run-time information. For equality constraints,

the dynamic adjustment used in (Hamida and Schoenauer

2002) is adopted.

ESSM is a simple multimembered ES (Mezura-Montes

and Coello 2005), a (l?k)-ES variant with two basic

modifications, i.e., a panmictic combined recombination

technique to improve its exploitation capability and a

diversity mechanism that keeps best infeasible solutions in

the population. Its constraint-handling method can be seen

as using RO
QC for the quality measurement. For equality

constraints, the dynamic adjustment used in (Hamida and

Schoenauer 2002) is considered.

ESRY05 (Runarsson and Yao 2005) is a (l, k)-ES variant

hybridized with differential variation. Its constraint-

handling method is the stochastic ranking technique,

which is equivalent to applying the RSR
QC rule for quality

measurement.

Table 9 Results for instances

with equality constraints as

�H = 1E-8

FP f*2 #DE2 #DESC #DESC-I St. dev.

G03 -1.00000 21.00000 21.00000 21.00000 1.748E-05

G05 5,126.49811 5,126.49811 5,126.50203 5,126.49812 8.143E-05

G11 0.75000 0.75000 0.75000 0.75000 4.334E-15

G13 0.053950 0.054720 0.055489 0.053950 2.799E-09

A cooperative group optimization system 487

123

SAMO-GA and SAMO-DE (Elsayed et al. 2011) are

two self-adaptive multi-operator (SAMO) based algorithms

that using multiple genetic and DE operators, respectively.

Each search operator has its own sub-population, and the

sub-populations are changed by a self-adaptive learning

strategy during the evolution process.

4.2.2 Comparison

Tables 10 and 11 list the results obtained by #DESC-I:S

and #DESC-I:L, and the existing algorithms.

For the instances with equality constraints, the tolerance

value �H = 1E-4 was considered in all the experiments,

except for the experiments by #DESC-I:L, ESATM, ESSM,

and PSOSAV, which used �H = 1E-8, 5E-6, 4E-4, and

1E-3, respectively.

The NFEs of ESATM, ESSM, and OEA were 2.4E5. The

NFEs of ESRY05 and GASAFF were 3.5E5. The NFEs of

SIMPa, CDE, and PSOSAV were 2.9E5–3.3E5, 1.0E5, and

5.0E4, respectively.

For NFE, #DESC-I:L is less than ESATM, ESSM, ESRY05,

GASAFF, OEA, and SIMPa, while #DESC-I:S is further less

than or similar to CDE and PSOSAV.

As for consistently achieving optimal solutions, the two

cases #DESC-I:S and #DESC-I:L were successful in eight

and twelve instances, while ESATM, ESSM, ESRY05, GASAFF,

OEA, SIMPa, CDE, and PSOSAV were successful in seven,

six, ten, zero, seven, ten, seven, and five instances,

respectively. For G02, #DESC-I:L performed better than

all the existing algorithms.

Compared to PSOSAV, #DESC-I:S was dominating.

Furthermore, #DESC-I:S outperformed ESSM, OEA,

GASAFF, and CDE, although it spent a much less NFE.

Compared to EASM, #DESC-I:S achieved better results in

six instances (G05, G06, G07, G09, G10, and G13), and

similar results in five instances. #DESC-I:S dominated

GASAFF in all the instances, except G02. Compared to

OEA, #DESC-I:S achieved better results in four instances

(G05, G07, G09, and G10), and similar results in six

instances. Compared to CDE, #DESC-I:S achieved better

results in five instances (G02, G03, G05, G11, and G13),

and similar results in five instances.

Other five algorithms are compared to #DESC-I:L.

For ESATM, the tolerance value for the instances with

equality constraints is �H = 5E-6. As demonstrated in

Table 11, #DESC-I:L worked efficiently on harder

instances with �H = 1E-8. Compared to ESATM on the

other nine instances, #DESC-I:L achieved better results

in G02, G07, G09, and G10, and obtained similar results

in five easy instances. Compared to ESRY05, #DESC-I:L

achieved better results in G02, G10, and G13, and found

similar results in all other instances. Compared to

SIMPa, #DESC-I:L performed better in G02, G07, and

G13, and found similar results in all other instances.

Compared to SAMO-GA, #DESC-I:L performed better in

five instances and worse in G02. Compared to SAMO-

DE, #DESC-I:L performed better in G07 and G10 and

worse in G02.

Overall, #DESC-I:L found better results over the exist-

ing algorithms on the classic benchmark set, with a less

NFE (except for CDE and PSOSAV) and a tighter �H for

problems with equality constraints.

4.3 Additional tests

In this section, additional tests are performed for demon-

strating the run-time behavior and the role of landscape

tuning of the hybrid CGO case #DESC-I:L.

Table 10 Mean results by #DESC-I:S and four existing algorithms

FP #DESC-I:S St. dev. GASAFF OEA CDE PSOSAV ESSM

G01 -14.99373 3.32E-03 -14.9993 215 214.999996 -14.715104 215.000

G02 -0.76896 3.38E-02 -0.77512 -0.782518 -0.724886 -0.740577 -0.785238

G03 21.00050 7.64E-04 -0.99930 21.000 -0.788635 -1.003367 21.000

G04 230,665.5387 8.58E-08 -30,659.41 230,665.539 230,665.539 230,665.538672 230,665.539

G05 5,126.49671 2.83E-08 N/A 5,127.048 5,207.410651 5,202.362681 5,174.492

G06 26,961.81388 3.28E-11 -6,961.769 26,961.814 26,961.814 26,961.813875 -6,961.284

G07 24.30765 2.09E-03 27.83 24.373 24.306210 24.988731 24.475

G08 20.095825 5.95E-16 -0.092539 20.095825 20.095825 20.095825 20.095825

G09 680.63006 1.06E-11 680.97 680.632 680.630057 680.655378 680.643

G10 7,049.66674 1.27E?00 7,760.54 7,219.011 7,049.248266 7,173.266104 7,253.047

G11 0.74990 6.00E-15 0.7546 0.750 0.757995 0.749002 0.75

G12 21.00000 0.00E?00 -0.99972 21 21.000000 21 21.000

G13 0.055977 7.94E-01 N/A 0.053969 0.288324 0.552753 0.166385

488 X.-F. Xie et al.

123

4.3.1 Run length distribution

The run-length distribution (RLD) (Hoos and Stutzle 2004)

is suitable for characterizing the run-time behavior of a

stochastic algorithm case on each problem instance. Fig-

ures 2, 3 and 4 show the frequency of solved runs along

with the number of cycles for #DESC-I:L on all thirteen

instances. All the instances were 100 % solved, except for

G02. The steepness of each RLD discloses nontrivial

information for the variance of the run length of each

algorithm case. For the problem instances with equality

constraints, their RLDs are influenced by the threshold

cycle, i.e., cTH = CRTU 	 T = 1,500. Here, G03 and G11

were mostly solved before cTH, whereas G05 and G13 were

solved after cTH and most of the solutions were obtained

quite soon after cTH, although there is a longer tail for G05.

For all instances without equality constraints, their RLDs

are steep, except for G02. Since the success frequency is

sufficiently high, using independent runs can further

improve the performance (Hoos and Stutzle 2004).

RLD gives a quite accurate estimation of competency of

an stochastic algorithm. In addition, RLD might be easily

approximated using a Weibull distribution (Hoos andFig. 2 RLDs for #DESC-I:L on G04, G06, G08, G09, G12

Table 11 Mean results by #DESC-I:L and four existing algorithms

FP #DESC-I:L St. dev. SIMPa ESATM ESRY05 SAMO-GA SAMO-DE

G01 215.00000 6.67E-08 215.00000 215.000 215.000 215.0000 215.0000

G02 -0.79080 1.10E-02 -0.78419 -0.790148 -0.782715 -0.79605 -0.79874

G03 21.00000 2.84E-07 21.00050 21.000 21.001 21.0005 21.0005

G04 230,665.5387 2.94E-10 230,665.5387 230,665.539 230,665.539 230,665.5386 230,665.5386

G05 5,126.49811 2.29E-11 5,126.49671 5,127.648 5,126.497 5,127.976 5,126.497

G06 26,961.81388 3.27E-11 26,961.81388 -6,961.814 26,961.814 26,961.81388 26,961.81388

G07 24.30621 2.24E-10 24.30626 24.316 24.306 24.4113 24.3096

G08 20.095825 1.00E-15 0.095825 20.09825 20.095825 20.095825 20.095825

G09 680.63006 2.91E-12 683.63006 683.639 680.630 683.634 680.630

G10 7,049.24802 3.28E-08 7,049.24802 7,250.437 7,049.250 7,144.40311 7,059.81345

G11 0.75000 4.22E-15 0.74990 0.75 0.750 0.7499 0.7499

G12 21.00000 0.00E?00 1.00000 21 21.000 1.0000 1.0000

G13 0.053950 4.78E-16 0.066770 0.053959 0.066770 0.054028 0.053942

Fig. 3 RLDs for #DESC-I:L on G01, G02, G07, and G10

Fig. 4 RLDs for #DESC-I:L on G03, G05, G11, and G13

A cooperative group optimization system 489

123

Stutzle 2004) with only two parameters. In other words, the

information of algorithm behavior might be compressed

and stored for possible analysis and learning.

4.3.2 Landscape tuning

In the facilitator, RRR
ADJ essentially encoding the knowledge

on handling equality constraints for adaptively shaping the

problem landscape. Because $xFB ¼ $xDP is a run-time

chunk in MS, only three other parameters might be used for

tuning the landscape. Note that RRR
ADJ does not account for

landscape tunings on the problem instances without

equality constraints.

Tables 12, 13 and 14 report the average results for

#DESC-I:L using different CRRE, CRNU, and CRTU values.

The algorithm achieved optimal results in a large parameter

space. CRRE should not be too large, since the relaxation

loses its usage. CRNU should not be close to 1 to ensure that

Eq. 4 is executed. CRTU should not be too small or too large.

Before tTH ¼ INTðCRTU 	 TÞ, the adaptive ratio-reaching

technique plays the role for ensuring a suitable pace to reach

the neighborhood of the optimal solution; after tTH ;R
RRR
QC is

equivalent to RO
QC , which is useful for fine search.

We expect that any global features that can explicitly

tuning the problem landscape might be encoded in the

group facilitator. For a better understanding the capability

of each RM rule, it is certainly useful to analyze the influ-

ence for different parameter combinations on different

problems. It might be more robust and effective to use an

ensemble of constraint handling techniques (Mallipeddi and

Suganthan 2010), including those RQC rules in Sect. 3.2.1.

Furthermore, the essential role of landscape tuning is

only providing transformed problem instances. The

majority of efforts for achieving better performance should

still be placed on the customization in the algorithmic

space formed from the portfolio of ESHs.

4.3.3 Expanded problem set

We continue to evaluate on an expanded problem set from

the CEC06 competition (Liang et al. 2006). For end users,

this might be viewed as the situation of their problems

changing over time. Table 15 give the results by #DESC-

I:L, SAMO-GA, and SAMO-DE. Here #DESC-I:L is run-

ning at N = 80. Thus for all the algorithms, NFE = 2.4E5.

Compared to SAMO-GA, #DESC-I:L performed better

in six instances and only worse in G17 and G18. Compared

to SAMO-DE, #DESC-I:L achieved better results in three

instances (G14, G19, G23), and comparable results in three

instances (G15, G16, and G24). In addition, the median

solutions of #DESC-I:L achieved or approached closely to

the optimal solutions.

Table 12 Results for #DESC-I:L using different CRRE values on the instances with equality constraints

FP CRRE = 1E0 CRRE = 1E1 CRRE = 1E2 CRRE = 1E3 CRRE = 1E4

G03 21.00000 21.00000 21.00000 -0.99991 -0.99860

G05 5,126.49811 5,126.49811 5,126.49811 5,126.49823 5,126.49917

G11 0.75000 0.75000 0.75000 0.75000 0.75000

G13 0.053950 0.053950 0.053950 0.053950 0.054721

Table 13 Results for #DESC-I:L using different CRNU values on the instances with equality constraints

FP CRNU = 0.00 CRNU = 0.25 CRNU = 0.50 CRNU = 0.75 CRNU = 1.00

G03 21.00000 21.00000 21.00000 21.00000 -0.03707(414)

G05 5,126.49811 5,126.49811 5,126.49811 5,126.50580 5,313.93466

G11 0.75000 0.75000 0.75000 0.75000 1.00707(40)

G13 0.053950 0.053950 0.053950 0.053950 (500)

Table 14 Results for #DESC-I:L using different CRTU values on the instances with equality constraints

FP CRTU = 0.00 CRTU = 0.25 CRTU = 0.50 CRTU = 0.75 CRTU = 1.00

G03 -0.96073 -0.99699 21.00000 21.00000 21.00000

G05 5,126.49823 5,126.49812 5,126.49811 5,126.49811 (500)

G11 0.75000 0.75000 0.75000 0.75000 0.75000

G13 0.085691 0.055809 0.053950 0.053950 (500)

490 X.-F. Xie et al.

123

Previous CGO cases only use naive search operators,

for the sake of simplicity in description. The performance

might be benefited from other superior operators. In

Table 15, #DESC-I:L2 is slightly tuned from #DESC-I:L

by using CCG = 0.5 for G.DE2. In other words, the DE

operator is tuned from best/2/bin into current-to-best/2/

bin, where ‘‘current-to-best’’ is a more advanced sub-

strategy in DE operators (Elsayed et al. 2013; Zhang and

Sanderson 2009). Compared to #DESC-I:L, this minor

change achieved statistically significant improvement on

three instances (G18, G19, and G20). In addition, all

median solutions of #DESC-I:L2 achieved the optimal

solutions.

The advance of #DESC-I:L2 might be largely attributed

to better preservation of the population diversity, since

‘‘current-to-best’’ relies less on the currently best state.

The cooperative group itself provides an implicit mecha-

nism to preserve diversity in the memory of agents.

However, it is still beneficial to prevent states becoming

too similar. In a human idea-generating group, redundant

states are often automatically filtered. Thus, CGO cases

might be further improved by considering some explicit

strategies to control redundant states, e.g., the speciation

method and RRND
GE used in multimethod (Vrugt et al. 2009)

and multi-operator algorithms (Elsayed et al. 2011, 2012,

2013).

In addition, the CGO system might also be benefited

from including advanced search operators (e.g., those used

in SAMO-DE) to further improve the performance on some

problem instances, e.g., G17 and G18.

4.4 Summary

The algorithm selection process was consistent with two

nontrivial insights in algorithm portfolio design (Huberman

et al. 1997; Streeter and Smith 2008). First, combining

competent strategies into a portfolio may improve the

overall performance by exploiting the negative correlation

among the offline performance of individual strategies

(e.g., #DE2 and #SC). Second, customized cooperative

search (#DESC-I) further tuned the portfolio performance

than when the individual strategies are independent

(#DESC). The two insights might help users to quickly find

an effective algorithm case in a large algorithmic space.

We then compared the performance of #DESC-I with

existing algorithms in diverse paradigms and with different

constraint-handling techniques. With less computational

times, CGO cases achieved competitive performance as

compared to existing algorithms.

The behavior of #DESC-I was demonstrated using the

run length distributions. We also performed a systematic

test to show the impacts in tuning the problem landscape.

An expanded problem set were also tested, and a slightly

tuned CGO case was also demonstrated.

5 Related work and discussion

In Sect. 2.7, we have discussed related work on two main

elements, i.e., the cooperative group paradigm and the

algorithm portfolio design, of the CGO system. The

implementation itself, shows the relation with existing

algorithm paradigms, e.g., PSO, DE, and SCO, and the role

of shaping landscape in handling constraints. The essential

role of the CGO system, however, is a development

framework for realizing customized algorithm portfolios

with low-level hybridization.

Many conceptual frameworks (Milano and Poli 2004;

Raidl 2006; Taillard et al. 2001; Talbi 2002) have been

proposed for formalizing (hybrid) metaheuristics. In

adaptive memory programming (AMP) (Taillard et al.

2001) and a refined version called the multiagent meta-

heuristic architecture (MAGMA) (Milano and Poli 2004),

metaheuristics are defined as a set of algorithmic compo-

nents operating on a shared memory. They provide a uni-

fied view for various metaheuristics, e.g., iterative LS,

ACO, and GA. Using a single memory, however, limits the

capability to support a cooperative group. There is also a

Table 15 Results by #DESC-I:L, #DESC-I:L2, SAMO-GA, and SAMO-DE

FP #DESC-I:L St. dev. Median #DESC-I:L2 St. dev. Median SAMO-GA SAMO-DE

G14 247.76489 5.00E-15 247.76489 247.76489 3.00E-15 247.76489 -46.47318 -47.68115

G15 961.71502 5.00E-15 961.71502 961.71502 0.00E?00 961.71502 961.71509 961.71502

G16 21.905155 0.00E?00 21.905155 21.905155 0.00E?00 21.905155 -1.905154 21.905155

G17 8,887.26933 4.17E?01 8,853.53967 8,891.23276 4.24E?01 8,853.53967 8,853.8871 8,853.5397

G18 -0.82591 7.79E-02 20.866025 -0.85036 5.25E-02 20.866025 -0.865545 -0.866024

G19 32.6912 8.52E-02 32.66595 32.65559 2.01E-07 32.65559 36.427463 32.75734

G21 202.98569 2.96E?01 193.72451 193.76478 8.90E-01 193.72451 246.09154 193.77138

G23 -382.93683 4.86E?01 -400.02517 -385.49695 6.42E?01 2400.05510 -194.76034 -360.81766

G24 25.508013 0.00E?00 25.508013 25.508013 0.00E?00 25.508013 25.508013 25.508013

A cooperative group optimization system 491

123

unified view (Raidl 2006) that hybrid metaheuristics can be

built on a toolbox of components, based on a common pool

template. In (Talbi 2002), a taxonomy has been proposed to

distinguish low and high levels, and relay and teamwork

models for hybrid metaheuristics. The hybridization among

stand-alone algorithms are often limited in the high level,

and heterogeneous algorithms can only independently run

or light-weighted cooperate through a shared medium.

From this taxonomy, hybrid CGO cases belong to a mix of

low and high levels, since individual ESHs can work in a

self-containing way, while the cooperative search at the

low level is emphasized. The CGO framework not only

supports simple relay and teamwork models based on the

individual and/or group memory, but also the low-level

cooperation among heterogeneous ESHs on customized

memory elements. In addition, the memory protocol for

individual and group memory provides a natural support

for quarantining detrimental results.

Various software frameworks have been proposed for

realizing hybrid metaheuristics. As surveyed in (Parejo

et al. 2012), 33 software frameworks have been identified,

and 10 of them have been selected for comparison. Typical

examples include HeuristicLab, ParadisEO, and JCLEC,

etc. Here we discuss the relations on toolbox elements, and

design of pure and hybrid metaheuristics.

These frameworks contain a toolbox of low-level com-

ponents for the code reuse. In ParadisEO, low-level com-

ponents are defined as Helpers in some categories, i.e.,

evolutionary helpers (e.g., transformation, selection, and

replacement operations), local search helpers (e.g., generic

and problem-specific classes to local search metaheuris-

tics), and some special helpers (e.g., the management of

parallel and distributed models). In HeuristicLab, the

toolbox contains atomic operators (e.g., mutation, cross-

over, and selection operators) working on data structures

called scopes, and micro operators might be defined using a

operator graph. In JCLEC, individuals and elementary

operations are represented by IIndividual and ITool inter-

faces (e.g., IProvider, ISelector, IRecombinator and IMu-

tation respectively for individual initialization, selection,

recombination and mutation operations). The toolbox in the

CGO system follows the same principle for the code reuse.

There are chunks and four primary rule interfaces

(RM, RIE, RUE, and RGE). Association interfaces are pro-

vided in macro components. For example, RSEL might be

used in RUE:X and RGE, and RQC and RADJ are used in some

macro RM rules. The RGE rule provides a unified entrance

for various kinds of search operators, e.g., the operators

extracted from DE, PSO, and SCO. Typical operators, e.g.,

local search and recombination, might be provided in

macro RGE rules. Heterogeneous RGE rules might also be

implemented using arbitrary input/output chunks. Generic

low-level hybridization models, e.g., relay (Talbi 2002),

can be implemented in macro rules. All these low-level

features might be realized in existing software frameworks,

but a unified RGE interface provides a basic step to support

heterogeneous ESHs. In addition, the use of RM provides a

way to utilize the global knowledge on the problem land-

scape, and might relieve the requirement and difficulty of

realizing too many competent components in the toolbox.

Algorithm paradigms are then realized using low-level

components. In JCLEC, Algorithms are coded from the

ISystem and IAlgorithm interfaces. In ParadisEO, The run

of the metaheuristics are coded into Runners by invoking

the helpers to perform specific actions on their data, and

pure and hybrid metaheuristics are coded into Solvers. In

HeuristicLab, some algorithms might be designed by using

an operator graph, and complex algorithms are created by

writing code. Each of these algorithm paradigms might use

a configuration file to define parameters and some opera-

tors of specific interfaces. These frameworks support dif-

ferent paradigms, e.g., stochastic local search, GA, PSO,

and DE, but these algorithms are coded separately. Each

algorithm paradigm can only support a very limited algo-

rithmic space to limit the flexibility to adapt to user-spe-

cific problem sets, and the configuration file can only

provide very limited operator replacements. Hybridization

between paradigms often needs to extensively write code

by realizing a new paradigm. Thus, there is often a steep

learning curve for existing frameworks (Parejo et al. 2012).

For the CGO system, the framework can be seen as a

concrete and unified algorithm paradigm, and the script is

its configuration file. The setting in a cooperative group

with flexible memory protocol facilitates the realization of

heterogeneous ESHs. The effort of designing a stand-alone

algorithm (e.g., PSO, DE, and SCO) is reduced to imple-

ment a few algorithmic components and then organize

them into an ESH using the script. Furthermore, hybrid-

ization can be realized by only defining customized algo-

rithm portfolios in the CGO script, without writing any

additional code. Based on the insights from algorithm

portfolio design, the capability to adapt to specific problem

sets might be benefited from negative correlations among

the offline performance of individual ESHs. If user-specific

problem sets change over time, new heuristics that mainly

tackle some of new problems unsolved by existing heu-

ristics can be added into the portfolio, and obsolete ESHs

can be removed, if necessarily. There are two kinds of

users for a CGO system. Advanced users might focus on

realizing algorithmic components in the toolbox (and even

improving the CGO framework for highly advanced users),

and then designing new ESHs using the script. Basic users

might only need pay attention to design customized port-

folios based on offline performance of ESHs, and do not

need advanced knowledge on algorithmic components and

framework details.

492 X.-F. Xie et al.

123

It is also interesting to discuss about the similarities and

differences with existing multimethod (Vrugt et al. 2009),

multi-operator (Elsayed et al. 2011, 2012, 2013), and

ensemble methods (Mallipeddi et al. 2010a, b; Mallipeddi

and Suganthan 2010). These algorithms provides high-

performance realizations in combining the strengths of

different search operators (e.g., ES, GA, DE, and PSO) and

constraint-handling techniques. These operators might be

significant sources for the CGO toolbox. Furthermore, a

distinguished feature of these algorithms is that multiple

operators compete the offspring generation in sub-popula-

tions with adaptively varied sizes, to favor some operators

that exhibit higher reproducive success, over the evolution

process. Compared to these methods, the CGO system

provide a flexible way to support customized low-level

cooperation among heterogeneous ESHs that interact on

multiple chunks in the private memory of individual

agents.

5.1 Possible extensions

To reduce the complexity for description, the current CGO

system is realized in the naive form. For future work, some

possible extensions are discussed.

Many extensions do not require any changes in the

framework. As shown in previous tests, the system can

benefit from advanced algorithmic components that tailor

to specific problem structures. For large-scale problems,

many practical ESHs might only work on partial problems.

The agents might still benefit from their cooperative search

if the partial problems handled by different ESHs are suf-

ficiently overlapped (otherwise agents might only rely on

local reactive strategies; Liu et al. 2002).

It is also useful to formally define commonly-used

macro components for simplifying the reusing of algo-

rithmic components and implementing new ESHs.

Some extensions require more or less changes on the

CGO framework. Here we list two possible extensions,

then discuss possible changes on the framework.

First, the facilitator might provide multiple RM rules to

support an ensemble of constraint handling techniques

(Mallipeddi and Suganthan 2010). Second, the manual

process used in the experiments might be regarded as a

greedy maximum set cover strategy, and the online selec-

tion of ESHs in the portfolio is purely proportionally,

where individual ESHs might be favored by providing

relatively larger CW values. It is also possible to utilize

some intelligent algorithm selection methods (Birattari

et al. 2002; Smith-Miles 2008; Xie and Zhang 2004), by

inferring from the integration of run-time information and

offline performance of individual ESHs in the portfolio.

To support online self-adaptation, the basic intuition

(Elsayed et al. 2011; Mallipeddi and Suganthan 2010;

Vrugt et al. 2009) is to favor operators that contribute more

for the overall performance. The CGO framework might

incorporate three basic changes: (1) each agent associates

newly generated chunks with some tags. The tags might

include the identifiers of components in usage (e.g., ESH

and RM). (2) The facilitator provides some evaluations

(Elsayed et al. 2011; Mallipeddi and Suganthan 2010;

Vrugt et al. 2009) on the contributions of the chunks

associated with different tags. (3) Based on the evaluation

information, each agent updates the weights for algorithmic

components in usage. These changes, nevertheless, might

only cause few changes in the script.

6 Conclusions

The cooperative group optimization (CGO) system is a

generic framework to combine the advantages of the

cooperative group and low-level portfolio design for real-

izing CGO algorithms. In the cooperative group, the agents

not only search the problem landscape in a parallel way by

using diverse knowledge in their individual memory, but

also cooperate with their peers by diffusing novel knowl-

edge through the group memory. The search process might

also be accelerated through adaptive landscape shaping by

a passive group leader.

The CGO framework is driven by the CGO script that

assembles algorithmic components in the CGO toolbox.

The CGO script is based on a multilayer design to facilitate

the accumulation of knowledge over time. Based on the

CGO system, implementing a stand-alone embedded

search heuristic (ESH) only needs to implement a few

algorithm components, and customized portfolios can be

defined using the script without writing any additional

code. Possible cooperative portfolios form a large algo-

rithmic space. The offline performance of individual ESHs

might be used for help adapting the framework to user-

specific problem sets, based on the nontrivial insights from

algorithm portfolio design. Advanced users might focus on

realizing algorithmic components and then defining new

ESHs using the script, whereas basic users might only pay

attention to design customized portfolios on existing ESHs.

Finally, we have discussed several aspects of the pro-

posed CGO system that warrant further investigation.

References

Anderson JR (2005) Human symbol manipulation within an inte-

grated cognitive architecture. Cognit Sci 29(3):313–341

Barkat Ullah ASSM, Sarker R, Cornforth D, Lokan C (2009) AMA: a

new approach for solving constrained real-valued optimization

problems. Soft Comput 13(8-9):741–762

A cooperative group optimization system 493

123

Becerra RL, Coello CAC (2006) Cultured differential evolution for

constrained optimization. Comput Methods Appl Mech Eng

195(33–36):4303–4322

Beyer HG (2001) On the performance of (1, k)-evolution strategies

for the ridge function class. IEEE Trans Evol Comput

5(3):218–235

Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing

algorithm for configuring metaheuristics. In: Genetic and

evolutionary computation conference. Morgan Kaufmann, New

York, pp 11–18

Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics

in combinatorial optimization: a survey. Appl Soft Comput

11:4135–4151

Boyd R, Richerson PJ, Henrich J (2011) The cultural niche: Why

social learning is essential for human adaptation. Proc Natl Acad

Sci 108:10918–10925

Cahon S, Melab N, Talbi EG (2004) ParadisEO: a framework for the

reusable design of parallel and distributed metaheuristics. J

Heurist 10:357–380

Chen X, Ong YS, Lim MH, Tan KC (2012) A multi-facet survey on

memetic computation. IEEE Trans Evol Comput 15(5):591–607

Curran D, O’Riordan C (2006) Increasing population diversity

through cultural learning. Adapt Behav 14(4):315–338

Danchin É, Giraldeau LA, Valone T, Wagner R (2004) Public

information: from nosy neighbors to cultural evolution. Science

305(5683):487–491

Deb K (2000) An efficient constraint handling method for genetic

algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

Dennis A, Valacich J (1993) Computer brainstorms: more heads are

better than one. J Appl Psychol 78(4):531–537

Edgington T, Choi B, Henson K, Raghu T, Vinze A (2004) Adopting

ontology to facilitate knowledge sharing. Communi ACM

47(11):85–90

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in

evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

Elsayed S, Sarker RA, Essam DL (2011) Multi-operator based

evolutionary algorithms for solving constrained optimization

problems. Comput Oper Res 38:1877–1896

Elsayed S, Sarker RA, Essam DL (2012) On an evolutionary approach

for constrained optimization problem solving,. Appl Soft Com-

put 12(10):3208–3227

Elsayed S, Sarker RA, Essam DL (2013) An improved self-adaptive

differential evolution algorithm for optimization problems. IEEE

Trans Ind Inf 9(1):89–99

Ericsson KA, Kintsch W (1995) Long-term working memory.

Psychol Rev 102(2):211–245

Farmani R, Wright J (2003) Self-adaptive fitness formulation for

constrained optimization. IEEE Trans Evol Comput

7(5):445–455

Galef BG (1995) Why behaviour patterns that animals learn socially

are locally adaptive. Anim Behav 49(5):1325–1334

Gigerenzer G, Selten R (2001) Bounded rationality: the adaptive

toolbox. MIT Press, Cambridge

Glenberg AM (1997) What memory is for. Behav Brain Sci

20(1):1–55

Goncalo JA, Staw BM (2006) Individualism–collectivism and group

creativity. Org Behav Human Decis Process 100:96–109

Hamida SB, Schoenauer M (2002) ASCHEA: new results using

adaptive segregational constraint handling. In: Congress on

evolutionary computation. IEEE, Honolulu, pp 884–889

He S, Wu Q, Saunders JR (2009) Group search optimizer: an

optimization algorithm inspired by animal searching behavior.

IEEE Trans Evol Comput 13(5):973–990

Hinton GE, Nowlan SJ (1987) How learning can guide evolution.

Complex Syst 1:495–502

Hoos HH, Stutzle T (2004) Stochastic local search: foundations and

applications. Elsevier, Burlington

Huberman BA, Lukose RM, Hogg T (1997) An economics approach

to hard computational problems. Science 275(5296):51–54

Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary

optimization with approximate fitness functions. IEEE Trans

Evol Comput 6(5):481–494

Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan

Kaufmann, San Mateo

Kohn NW, Smith SM (2011) Collaborative fixation: effects of others’

ideas on brainstorming. Appl Cognit Psychol 25(3):359–371

Laland KN (2004) Social learning strategies. Learn Behav 32(1):4–14

Lau HC, Wan WC, Halim S, Toh K (2007) A software framework for

fast prototyping of meta-heuristics hybridization. Int Trans Oper

Res 14(2):123–141

Leonard NE, Shen T, Nabet B, Scardovi L, Couzin ID, Levin SA

(2012) Decision versus compromise for animal groups in

motion. Proc Natl Acad Sci 109(1):227–232

Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN,

Coello CAC, Deb K (2006) Problem definitions and evaluation

criteria for the cec 2006 special session on constrained real-

parameter optimization. Tech. rep., Nanyang Technological

University, Singapore

Liu J, Han J, Tang YY (2002) Multi-agent oriented constraint

satisfaction. Artif Intell 136(1):101–144

Liu J, Tsui KC (2006) Toward nature-inspired computing. Commun

ACM 49(10):59–64

Liu J, Zhong W, Hao L (2007) An organizational evolutionary

algorithm for numerical optimization. IEEE Trans Syst Man

Cybern Part B 37(4):1052–1064

Lu H, Chen W (2008) Self-adaptive velocity particle swarm

optimization for solving constrained optimization problems. J

Global Optim 41(3):427–445

Mallipeddi R, Mallipeddi S, Suganthan PN (2010a) Differential

evolution algorithm with ensemble of parameters and mutation

strategies. Appl Soft Comput 11(2):1679–1696

Mallipeddi R, Mallipeddi S, Suganthan PN (2010b) Ensemble

strategies with adaptive evolutionary programming. Inf Sci

180(2):1571–1581

Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling

techniques. IEEE Trans Evol Comput 14(4):561–579

Mezura-Montes E, Coello CAC (2005) A simple multimembered

evolution strategy to solve constrained optimization problems.

IEEE Trans Evol Comput 9(1):1–17

Milano M, Poli A (2004) MAGMA: a multiagent architecture for
metaheuristics. IEEE Trans Syst Man Cybern Part B 34(2):925–941

Nemeth CJ (1986) Differential contributions of majority and minority

influence. Psychol Rev 93(1):23–32

Omran MGH, Engelbrecht AP (2009) Free search differential

evolution. In: IEEE congress on evolutionary computation.

IEEE, Trondheim, pp 110–117

Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of

adaptive memetic algorithms: a comparative study. IEEE Trans

Syst Man Cybern Part B: Cybern 36(1):141–152

Parejo JA, Ruiz-Cortes A, Lozano S, Fernandez P (2012) Metaheu-

ristic optimization frameworks: a survey and benchmarking. Soft

Comput 16(3):527–561

Paulus PB (2000) Groups, teams, and creativity: the creative potential

of idea-generating groups. Appl Psychol 49(2):237–262

Platon E, Mamei M, Sabouret N, Honiden S, Van Parunak H (2007)

Mechanisms for environments in multi-agent systems: survey

and opportunities. Auton Agents Multi Agent SystAgents and

Multi-Agent Systems 14(1):31–47

Price K, Storn RM, Lampinen JA (2005) Differential evolution: a

practical approach to global optimization. Springer, NY

494 X.-F. Xie et al.

123

Raidl GR (2006) A unified view on hybrid metaheuristics. In:

International conference on hybrid metaheuristics. Gran Canaria,

pp 1–12

Reynolds RG, Peng B, Ali MZ (2008) The role of culture in the

emergence of decision-making roles: an example using cultural

algorithms. Complexity 13(3):27–42

Runarsson TP, Yao X (2005) Search biases in constrained evolution-

ary optimization. IEEE Trans Syst Man Cybern Part C

35(2):233–243

Salomon R (1996) Re-evaluating genetic algorithm performance

under coordinate rotation of benchmark functions. BioSystems

39(3):263–278

Satzinger JW, Garfield MJ, Nagasundaram M (1999) The creative

process: the effects of group memory on individual idea

generation. J Manage Inf Syst 15(4):143–160

Smith-Miles K (2008) Cross-disciplinary perspectives on meta-

learning for algorithm selection. ACM Comput Surv 41(6),

Art. No. 6

Socha K, Dorigo M (2008) Ant colony optimization for continuous

domains. Eur J Oper Res 185(3):1155–1173

Stadler PF, Happel R (1999) Random field models for fitness

landscapes. J Math Biol 38(5):435–478

Streeter M, Smith SF (2008) New techniques for algorithm portfolio

design. In: Conference in Uncertainty in Artificial Intelligence,

pp. 519–527. AUAI, Helsinki, Finland

Taillard ED, Gambardella LM, Gendreau M, Potvin JY (2001)

Adaptive memory programming: a unified view of metaheuris-

tics. Eur J Oper Res 135(1):1–16

Takahama T, Sakai S (2005) Constrained optimization by applying

the alpha constrained method to the nonlinear simplex method

with mutations. IEEE Trans Evol Comput 9(5):437–451

Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heurist

8(5):541–564

Tomasello M, Kruger A, Ratner H (1993) Cultural learning. Behav

Brain Sci 16(3):495–511

Ventura S, Romero C, Zafra A, Delgado JA, Hervas C (2008) JCLEC:

a Java framework for evolutionary computation. Soft Comput

12(4):381–392

Vrugt JA, Robinson BA, Hyman JM (2009) Self-adaptive multi-

method search for global optimization in real-parameter spaces.

IEEE Trans Evol Comput 13(2):243–259

Wagner S (2009) Heuristic optimization software systems—modeling

of heuristic optimization algorithms in the heuristiclab software

environment. Phd thesis, Johannes Kepler University, Linz

Wang Y, Cai Z, Zhou Y, Zeng W (2008) An adaptive tradeoff model

for constrained evolutionary optimization. IEEE Trans Evol

Comput 12(1):80–92

Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

Woolley AW, Chabris CF, Pentland A, Hashmi N, Malone TW

(2010) Evidence for a collective intelligence factor in the

performance of human groups. Science 330(6004):686–688

Xie XF, Liu J (2005) A compact multiagent system based on

autonomy oriented computing. In: IEEE/WIC/ACM interna-

tional conference on intelligent agent technology. IEEE, Com-

piegne, pp 38–44

Xie XF, Liu J (2009) Multiagent optimization system for solving the

traveling salesman problem (TSP). IEEE Trans Syst Man Cybern

Part B Cybern 39(2):489–502

Xie XF, Zhang WJ (2004) SWAF: swarm algorithm framework for

numerical optimization. In: Genetic and evolutionary computa-

tion conference (GECCO). Springer, Seattle, pp 238–250

Xie XF, Zhang WJ, Yang ZL (2002) Social cognitive optimization for

nonlinear programming problems. In: International conference

on machine learning and cybernetics. IEEE, Beijing, pp 779–783

Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution

with optional external archive. IEEE Trans Evol Comput

13(5):945–958

Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with

differential evolution operator. In: IEEE international conference

on systems, man, and cybernetics. IEEE, Washington, DC,

pp 3816–3821

A cooperative group optimization system 495

123

	A cooperative group optimization system
	Abstract
	Introduction
	CGO system
	Preliminary concepts
	Notation

	CGO framework: overall description
	Facilitator
	Agents and interactive center

	CGO toolbox
	Background rules
	Elemental initializing rule
	Elemental updating rule
	Elemental generating rule

	CGO script
	Memory protocol specification
	Generative specification
	Meta-management specification

	CGO framework: memory and behavior
	Long-term memory and buffer modules
	Initializing and updating behavior
	Collecting behavior
	Submitting behavior
	Generating behavior
	Meta-managing behavior

	CGO framework: execution process
	System characteristics
	Cooperative group
	Algorithm portfolios
	Multilayer script

	Implementation for constrained optimization
	The constrained optimization problem
	Quality measurement
	Existing quality comparison rules
	Adaptive ratio-reaching adjustment
	Incorporate global knowledge

	The facilitator
	Elemental generating rules
	Differential evolution RGE rule
	Particle swarm RGE rule
	Social cognitive RGE rule

	Implementation of CGO script
	Informal execution process

	Discussion

	Experimental results
	Algorithm selection
	Comparison with existing algorithms
	Existing algorithms
	Comparison

	Additional tests
	Run length distribution
	Landscape tuning
	Expanded problem set

	Summary

	Related work and discussion
	Possible extensions

	Conclusions
	References

