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Model-based intersection optimization strategies have been widely investigated for
distributed traffic signal control in road networks. Due to the form of ‘‘black-box’’ optimi-
zation that is typically assumed, a basic challenge faced by these strategies is the combina-
torial nature of the problem that must be solved. The underlying state space is exponential
in the number of time steps in the look-ahead optimization horizon at a given time reso-
lution. In this paper, we present a schedule-driven intersection control strategy, called
SchIC, which addresses this challenge by exploiting the structural information in non-uni-
formly distributed traffic flow. Central to our method is an alternative formulation of inter-
section control optimization as a scheduling problem, which effectively reduces the state
space through use of an aggregate representation on traffic flow data in the prediction hori-
zon. A forward recursive algorithm is proposed for solving the scheduling problem, which
makes use of a dominance condition to efficiently eliminate most states at early stages.
SchIC thus achieves near optimal solutions with a polynomial complexity in the prediction
horizon, and is insensitive to the granularity of time resolution that is assumed. The perfor-
mance of SchIC with respect to both intersection control and implicit coordination between
intersections is evaluated empirically on two ideal scenarios and a real-world urban traffic
network. Some characteristics and possible real-world extensions of SchIC are also
discussed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Traffic signal control in road networks is an important practical problem due to substantially increasing delay and fuel
cost caused by traffic congestion (Schrank et al., 2011). It is generally recognized that improved traffic signal control offers 

the biggest payoff for reducing congestion on surface streets, and that signal control systems that adjust their settings to fit 

current traffic conditions offer the most potential. However, the adaptive control problem is challenging. On one hand, the 

combined number of signal control choices and traffic conditions is huge for even an individual intersection (Papageorgiou 

et al., 2003; Shelby, 2004) and grows exponentially with the size of the traffic signal network (Papadimitriou and Tsitsiklis, 

1999). On the other, the non-linear dynamics in a switched flow system (Chase et al., 1993) and unpredictable driving behav- 

iors make reliable prediction possible only over a limited time horizon and force continual updates of signal timings to pro- 

vide near optimal results.
Classical signal control systems assume a cyclic operation of traffic lights, where each light moves through its sequence of

phases with calculated split parameters in a cycle that is offset from those of its neighbors. In pre-timed control systems, fixed 

signal timing plans for the intersections in a traffic network can be built using off-line optimization tools, such as TRANSYT
(Robertson, 1969), SYNCHRO (Husch and Albeck, 2003), and VISGAOST (Stevanovic et al., 2008), based on historical traffic
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flow data, for specific time periods (typically on a time-of-day basis). These methods provide macroscopic understanding of
traffic flow patterns that have a degree of stability over time. Off-line optimized plans also sometimes serve as a guideline, as
a baseline, and/or as contingency plans in more advanced traffic control systems, e.g., SCOOT (Robertson and Bretherton,
1991), and ACS-Lite (Luyanda et al., 2003).

Some traffic-responsive cyclic approaches utilize on-line traffic data. The common cycle length of a given traffic network
(or sub-network) might be dynamically adjusted to meet the traffic demand (Sims and Dobinson, 1980; Robertson and
Bretherton, 1991). The offsets between intersections might be calculated by using statistical flow profiles (Luyanda et al.,
2003) or might be incrementally adjusted (Robertson and Bretherton, 1991) to facilitate good progression for higher traffic
flow links. Phase splits might be locally adjusted (Robertson and Bretherton, 1991), or calculated by balancing degree of sat-
uration (Sims and Dobinson, 1980) or phase utilization (Luyanda et al., 2003). Normally, it is difficult for these methods to
exploit the significance of short-term (e.g., second-by-second (Wu et al., 2010)) variability of traffic, due to the rather strong
restriction imposed by reliance on parametric timing plans.

Many other traffic signal control systems have been built in a bottom-up way (Mirchandani and Head, 2001; Gartner
et al., 2002; Papageorgiou et al., 2003). In these systems, intersection control plays a fundamental role in adapting to pre-
vailing dynamic traffic flow data in real time. Each intersection decides independently when to switch among its sequence
of phases in a way that enforces basic safety and fairness constraints, rather than being confined to parametric timing plans.

Some reactive intersection control strategies, e.g., vehicle-actuated (VA) logic (Dunne and Potts, 1964; Viti and van
Zuylen, 2010) and other self-controlled strategies (Lämmer and Helbing, 2008), make decisions quickly based on simple
clues in traffic flow, e.g., a critical interval between vehicles (Dunne and Potts, 1964; Viti and van Zuylen, 2010) and an antic-
ipated queue of vehicles (Lämmer and Helbing, 2008). These methods can obtain reasonably good performance for an iso-
lated intersection (Lämmer and Helbing, 2008). However, due to their myopic nature, these methods are susceptible to
suboptimal decisions.

To enable more optimal decisions, model-based intersection control methods (Papageorgiou et al., 2003) have been
widely employed. Well-known examples include DYPIC (Robertson and Bretherton, 1974), OPAC (Gartner et al., 2002), PRO-
DYN (Henry et al., 1983), COP (Sen and Head, 1997), ALLONS-D (Porche and Lafortune, 1999), ADPAS (Kim et al., 2005), and
CRONOS (Boillot et al., 2006). These methods attempt to produce a globally optimized solution over a specified optimization
horizon. The underlying state space is formed by dividing this horizon into discrete intervals based on a fixed time resolution,
and all temporal values are rounded into numbers of time steps. Assuming that the control model is sufficiently accurate to
represent the real problem, this space is then searched via an optimization process. To cope with the fact that a reliable pre-
diction horizon can be quite limited, these methods typically employ the rolling horizon scheme (Bell, 1992; Newell, 1998).

With a strong optimization capability, isolated intersection control strategies can provide a strong basis for implicit
coordination between neighbor intersections (Porche and Lafortune, 1999). These strategies can also be integrated into net-
work-wide control systems, e.g., RHODES (Mirchandani and Head, 2001) and RT-TRACS (Gartner et al., 2002), where coor-
dination is explicitly strengthened, either by applying additional signal control guidance from neighboring intersections
that incorporates non-local impact or by extending the prediction horizon with flow information from neighboring
intersections.

For existing model-based control methods, the basic challenge is computational efficiency, as the underlying state space
is exponential in the number of time steps in the optimization horizon (Papageorgiou et al., 2003). Exact methods based on
exhaustive search and branch-and-bound (Robertson and Bretherton, 1974; Porche and Lafortune, 1999; Shelby, 2004) are
too time-consuming for on-line use in most realistic settings. ALLONS-D, for example, has been shown to be intractable for a
prediction horizon of just 15 time steps (Shelby, 2004). To achieve real-time tractability, existing model-based methods of-
ten incorporate simple space reduction schemes (e.g., coarser time resolution (Shelby, 2004; Porche and Lafortune, 1999),
shorter optimization horizon (Robertson and Bretherton, 1974; Henry et al., 1983; Sen and Head, 1997), smaller number
of phase switches (Gartner et al., 2002)), and/or more approximate solving methods (e.g., approximate state elimination
(Henry et al., 1983; Sen and Head, 1997), value function approximation (Cai et al., 2009), and heuristic search (Boillot
et al., 2006)), both of which can significantly affect solution quality.

In this paper, we focus on the design of a Schedule-driven Intersection Control strategy (SchIC) that can efficiently pro-
duce (near) optimal solutions in real time. SchIC achieves efficient search space reduction and state elimination by exploiting
structural flow information in the prediction horizon. The intersection control problem is formulated as a scheduling prob-
lem, based on an aggregate representation on flow data, where the non-uniformly distributed flow information is used to
form a reduced state space that retains promising solutions. Compared to existing single-machine scheduling problems
(Koulamas, 2010; Du and Leung, 1990), our scheduling model incorporates some implicit features of the traffic control prob-
lem. An optimization procedure is then proposed to solving the scheduling model based on an efficient elimination criterion
that reduces the number of state updates significantly. The complexity of the resulting SchIC procedure is polynomial in the
prediction horizon, and hence much less dependent on choice of temporal granularity. The capability of SchIC for intersec-
tion optimization and implicit coordination between intersections is evaluated on two ideal scenarios and a real-world
traffic network. Possible extensions of SchIC in more complex real-world applications, including coordinated network-wide
control, are also discussed.

The remainder of the paper is organized as follows. In Section 2, we formulate the intersection traffic control problem in a
way that is compatible with existing methods and allows comparison to SchIC. In Section 3, we describe the details of the
SchIC algorithm. In Section 4 we present experimental results that indicate the performance of the proposed approach. Next,



Fig. 1. Intersection traffic control (a1 and a2) based on a rolling horizon scheme (b).
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in Section 5, we discuss some characteristics and possible extensions of SchIC. Finally, in Section 6 we summarize and indi-
cate directions for future research.

2. Intersection traffic control

We consider a signalized intersection with a set of entry and exit approaches, in which each approach has a fixed length
and a set of lanes. The fundamental mapping between traffic movements and light signals is defined by the phase design con-
taining a set of phases I, in which each phase index i 2 [1, jIj] corresponds to the right-of-way for a route i. Each route contains
a set of non-conflicting movements that allow safe passage of vehicles through the intersection, in which each movement
defines the traffic flow from (some number of the departure lanes of) an entry approach to an exit approach. If one route
is allocated the right-of-way (i.e., green light), the traffic light must be red for all other routes. In addition, we assume that
all routes are non-overlapping, i.e., do not share any movements.

The signal timing specification contains a set of operating constraints on the phase switching process to ensure safety and
fairness for all vehicles in the traffic flow:

(1) Phase indices switch in cycles, i.e., the next phase of i is next(i) = (i + 1) modulo (jIj), since a fixed phase sequence is
preferred by many traffic engineers (Mirchandani and Head, 2001).

(2) Each phase i has a variable duration between GðiÞmin;G
ðiÞ
max

h i
, in which GðiÞmin and GðiÞmax are respectively the minimum and

maximum green times for phase i.
(3) Each switching process from phase i to next(i) requires a fixed intergreen time Y(i) (or effective clearance interval (Sen

and Head, 1997)) during which no vehicles can leave from the intersection.1

Each actual phase is defined as (i, g), or g(i), in which i is the phase index, g is a variable phase duration. A phase switching
sequence (PSS) is defined as a sequence of phases, given an initial phase condition (ic, gc) at its start time, where ic is the cur-
rent green phase index, and gc is the time that the current phase ic has been green. Based on the start time, the actual oper-
ation period of all phases in a PSS can be calculated by adding their phase durations and corresponding intergreen times
between phases. The structure of a PSS allows it to be easily expanded by increasing gc for the current phase or adding
the next phase.

The execution of the traffic light follows a specific PSS, called TL-PSS, that satisfies the signal timing specification over
time. For intersection traffic signal control, the objective is to implement a complete TL-PSS that minimizes the cumulative
delay (as in Sen and Head (1997), Shelby (2004), and Porche and Lafortune (1999)) of all vehicles during the entire process of
approaching and passing through the intersection.

2.1. Basic framework

We adopt a basic framework that is compatible with existing model-based control methods (Mirchandani and Head,
2001; Gartner et al., 2002; Papadimitriou and Tsitsiklis, 1999), in order to provide the right context for discussing our
method.

As shown in Fig. 1, intersection control is realized by iteratively extending the existing TL-PSS before each of its finish
times, based on the rolling horizon scheme (b) (Bell, 1992; Newell, 1998), to utilize flow information in a limited prediction
horizon (HP). Given each finish time of the existing TL-PSS (e.g., O) as the origin point, the total ‘‘roll step’’ of obtaining the
1 In real life, an intergreen time might contain a part of ‘‘yellow’’ and ‘‘all-red’’ intervals (Sen and Head, 1997), during which vehicles have sufficiently low
probability to leave from the intersection.
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inputs (a1) and running the intersection optimization strategy (a2) is performed during a short execution interval (ei) before
the finish time, in order to extend the existing TL-PSS for a roll interval. The only requirement is that ei is smaller than each
roll interval.

2.1.1. Inputs
For intersection optimization, the input information includes basic (and additional) operating constraints, route flow infor-

mation, and related setting parameters.
The basic operating constraints include the signal timing specification and the current phase condition (ic, gc), i.e., the last

phase of the existing TL-PSS. These constraints are used to ensure feasibility of TL-PSS extension. If necessary, additional
operating constraints might be added to incorporate knowledge that is learned/inferred from local information and coordi-
nation requirements from neighbors (Mirchandani and Head, 2001). In practical usages, the actual operating constraints in
total control information might be a mix of both types.

The route flow information contains the queue size q(i) and temporal arrival distribution (Mirchandani and Head, 2001) of
vehicles between 0;HðiÞP

h i
on each route i, given the origin time point is located at the stop line of the intersection. The max-

imum prediction horizon is HP ¼maxjIji¼1HðiÞP .
Setting parameters are constant in each intersection optimization process. Signal control is performed in an optimization

horizon (HO), and all temporal values are rounded into numbers of time steps by dividing a fixed time resolution (D)
(Robertson and Bretherton, 1974). Typical model parameters include the start-up lost time and saturation flow rate on each
route (Sharma et al., 2007; Shelby, 2004; Sen and Head, 1997), which can be estimated from historical data (Sharma et al.,
2007; Mirchandani and Head, 2001). In addition, there are a few algorithm parameters.

2.1.2. Underlying state space
Given a time resolution D, the underlying state space X can be described by a decision tree (Robertson and Bretherton,

1974; Porche and Lafortune, 1999; Shelby, 2004). Each PSS is built from time 0 (the root node), and the state at its finish time
is a partial solution with an objective value (cumulative delay). At each stage of the search, successor states are generated by
making decisions to extend the current PSS by one step of D, which might belong either to a phase or an intergreen time. For
any given state, the corresponding PSS can be assembled by collecting the decisions previously made along the path back to
the root node.

Each state is called a full-clearance state if it is able to clear all vehicles in the prediction horizon. Each full-clearance state
is a natural leaf state, since further expansion will not change the objective value. For the complete decision tree, the optimal
solution is the one with the minimal cumulative delay among all leaf states, and its finish time is called H#

O . Note that H#
O

might be much longer than HP, especially for saturated flow conditions.
Without loss of optimality, a sufficiently long optimization horizon HO HO P H#

O

� �
can be used to limit the finish time of

states. A basic challenge is that the size of the state space X increases exponentially with jHOj = HO/D, the number of time
steps in HO (Papageorgiou et al., 2003).

The space X might not be implemented directly, but it nonetheless provides a common context for discussing the solution
quality and efficiency of different optimization strategies. Efficiency mainly depends on the number of state updates (i.e.,
visited states) in X, and on the average time required for each state update. For a rational optimization, each (near) optimal
solution should either be a (near) optimal full-clearance PSS in X or part of one.

2.1.3. Intersection optimization
The intersection optimization framework contains a control model, an optimization procedure, an extension decision, and a

static component for TL-PSS implementation.
The control model has two basic functions: (1) formation of an actual state space (D), which is a subspace of the under-

lying state space X and (2) transition and evaluation of the states in D. The optimization procedure then tries to find a (near)
optimal state in D through some search/optimization strategies. For intersection optimization, the formation of the state
space D (i.e., state space reduction) and the optimization procedure play the solving role that is critical to efficient and effec-
tive solution generation. The extension decision outputs a time duration ext P 0 based on the solution obtained by the opti-
mization procedure (normally the first step or phase).

Based on the basic operating constraints, TL-PSS is implemented in a roll interval by using a static repair rule (Porche and

Lafortune, 1999; Kim et al., 2005): If ext > 0, the current phase is extended to gc ¼min gc þ ext;GðicÞmax

� �
. If gc � GðicÞmax or ext � 0,

the current phase is terminated, and a new phase in;G
ðinÞ
min

� �
is added, in which in = next(ic), after the intergreen time Y ðicÞ.

3. Schedule-driven Intersection Control (SchIC)

SchIC is a realization of the above intersection optimization framework that efficiently achieves (near) optimal solutions.
The novelty of SchIC stems from its effective utilization of route flow information to strengthen the solving efficiency.

The SchIC algorithm proceeds as follows. First, the route flow information is preprocessed into an aggregate form that
captures structural information in the traffic flow. Second, a scheduling model for traffic control is formulated, in which



Fig. 2. Example of clusters on a route, each can be defined by three of the five attributes.
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the state space (D) (a much smaller subspace of X) is formed by using the clusters in the aggregate form. Third, for the opti-
mization procedure, an efficient elimination criterion is proposed, which is able to reduce the number of state updates with-
out loss of optimality, by utilizing an inherent property in the scheduling model. Finally, the extension decision is
implemented.

For the actual operation constraints, we adopt a common relaxation (Sen and Head, 1997; Kim et al., 2005; Cai et al.,
2009) of the basic operation constraints in which the maximum green times and hence gc are not included. This relaxation
is based on an assumption that phase durations should rarely extend to well-defined maximum green times. Note that the
constraints of maximum green times are always ensured by the static rule in the TL-PSS implementation (Section 2.1.3). For
simplicity, we do not consider any additional operating constraints in this paper.

Basic traffic models are used (Sharma et al., 2007; Mirchandani and Head, 2001): On each road, all vehicles are moving at
constant free-flow speed without any stopping; On each route, a queue of vehicles is discharged in a green phase at the sat-
uration flow rate (sfr) after the start-up lost time (slt).

3.1. Aggregate flow representation

The aggregate flow representation is defined by aggregating vehicles on routes into sequences of clusters. More precisely,
each C(i) is a cluster sequence on route i, which is transformed from the traditional route flow information. Because the trans-
formation process on each route is independent, the route index is omitted in this section.

The cluster sequence C associated with a given route represents the non-uniformly distributed traffic flow within the cur-
rent prediction horizon (HP). Each C contains an ordered sequence of clusters, (c(1), . . . , c(jCj)), where jCj is the number of clus-
ters in C. Each cluster c has five attributes, (jcj, arr, dep, dur, fr), in which jcj is the number of vehicles in c, arr (dep) gives the
expected arrival time (departure time) in reference to the stop line of the intersection respectively for the first (last) vehicle in
c, dur is the duration between dep and arr, and fr is the average flow rate when c is serviced (by assuming that vehicles are
uniformly distributed within each cluster). Clusters in C are ordered by increasing arr values. In principle, three of these five
attributes are enough to define c based on two equations, i.e., dur = dep � arr and fr = jcj/dur. As illustrated in Fig. 2, each clus-
ter is a block between [arr, dep], and the width, height and area are dur, fr, and jcj, respectively.

The basic intuition is that cumulative delay is only associated with those vehicles (in clusters) that are not serviced in
time. For a cluster with a high fr value, it is often better serviced in one phase to avoid a high cumulative delay on the residual
queue, due to rather long intergreen and start-up lost times that are wasted in the phase switching process.

On each route, the basic aggregate form of the cluster sequence C on the traditional flow information (Shelby, 2004; Sen
and Head, 1997) is obtained as follows. If the queue size q > 0, it is transformed into a queue cluster cq, which has jcqj = q,
arr(cq) = 0, and fr(cq) = sfr, as the first cluster in C. Here sfr is the saturation flow rate (Shelby, 2004; Sen and Head, 1997;
Sharma et al., 2007). The temporal arrival distribution of vehicles in the prediction horizon HP is divided into time segments
with a fixed sampling interval samp for detection, and a(h) is the number of vehicles arriving in the hth segment, for h = 1 to
HP/samp. For the hth segment, if a(h) > 0, it is transformed into an arriving cluster c, which has jcj = a(h), dep(c) = h � samp, and
dur(c) = samp, and is stored into C. No rounding error will be introduced if samp/D is an integer, as is considered in this paper.

This flow representation can be further aggregated through use of two techniques, which serve to reduce the problem size
while retaining the structural information in the traffic flow:

1. Threshold-based clustering – This technique captures a feature used by vehicle-actuated logic (VA) (Papageorgiou et al.,
2003; Viti and van Zuylen, 2010), where vehicles are continuously serviced if there are within a critical interval. Aggre-
gate clusters are formed by merging any two arriving clusters when the time gap between them is within a specified
threshold thc P 0. In this case, two clusters c(1) and c(2) are merged into one cluster c(0), which has arr(c(0)) = min (arr(c(1)),
arr(c(2))), dep(c(0)) = max (dep(c(1)),dep(c(2))), and jc(0)j = jc(1)j + jc(2)j.

2. Anticipated queue clustering – On each route, an anticipated queue contains the number of vehicles that are presently or in
the future will join the queue before the existing queue clears at the intersection (Lämmer and Helbing, 2008). The antic-
ipated queue is built by extending the initial queue cluster cq, such that both arr and fr values always remain unchanged,
whereas jcqjmight be increased if any vehicles join into the queue. Both dep and dur values of cq will increase accordingly
if jcqj increases.
In more detail, the clusters in C are examined one by one. For the jth cluster c(j), if arr(c(j)) 6 dep(cq), the anticipated queue
is expanded by the following process:
(1) If dep(c(j)) 6 dep(cq) or fr(c(j)) P fr(cq), c(j) totally joins into cq, i.e., jcqj = jcqj + jc(j)j, and c(j) is removed from C.
(2) Otherwise, a part or all of c(j) might join into cq, and dur(cq) is extended for
ddur ¼ ðdepðcqÞ � arrðcðjÞÞÞ=ð1� frðcðjÞÞ=sfrÞ;



X.-F. Xie et al. / Transportation Research Part C 24 (2012) 168–189 173
based on whether the flow rate of the later part of c(j) remains unchanged:

(a) If ddur P dur(c(j)), then c(j) joins into cq, and c(j) is removed from C.
(b) Otherwise, the earlier part of c(j) joins into cq, i.e., jcqj = jcqj + jc(j)j � ddur/dur(c(j)), and the later part of c(j), which

has arr = arr(c(j)) + ddur, dep = dep(c(j)), and fr = fr(c(j)), becomes a new cluster that remains in C.
The aggregation process for an anticipated queue is terminated if there is arr(c(j)) > dep(cq) or after the choice (2b) is
reached.

Proposition 1 can be obtained from the basic aggregate form resulting from the threshold-based clustering. Note that the
aggregation of an anticipated queue can further reduce jCj.

Proposition 1. On each route, there is jCj 6 HP/(thc + D) 6 jHPj.
Here jHPj = HP/D is the number of time steps in the prediction horizon HP. The upper bound of jCj is less sensitive to a fine

time resolution D, if thc is larger than D. In practice, the average size of C might be much smaller due to a non-uniform dis-
tribution of vehicles.

3.2. Scheduling model

In this section, the traffic control problem is modeled as a single machine scheduling problem, by respectively viewing the
intersection as the machine and clusters in the aggregate flow representation of different routes as jobs. For convenience, the
jth cluster in C(i) is called c(i,j), where j 2 [1, jC(i)j], and jC(i)j is the number of clusters on the route i.

We also make the following two assumptions. Assumption 1 is used for ensuring the usage of aggregate clusters. Assump-
tion 2 can be mostly derived from the constant (free-flow) speed (Henry et al., 1983; Sen and Head, 1997), for those arriving
vehicles in the prediction horizon.

Assumption 1 (Non-divisible). Each job is non-divisible, which means that all vehicles in one cluster leave the intersection
in the same phase.
Assumption 2 (Precedence). On each route i, c(i,j) leaves the intersection after c(i,j�1).
Based on Assumption 1, a schedule S specifies the order in which all clusters will pass through the intersection one by one.

A straightforward representation is to use a sequence of jobs, in which each job is a unique cluster c(i,j). However, this
representation is not convenient for constructing a feasible schedule that satisfies the precedence constraints.

Based on the fact that each job is processed in one phase and each phase services the route with the same index, S is

instead represented as a sequence of route indices, i.e., (s(1), . . . , s(k), . . . , s(jSj)), in which jSj ¼
PjIj

i¼1jC
ðiÞj. At the kth stage

(k 2 [1,jSj]), the schedule lets the kth job, which is the earliest cluster that remains on the route s(k), leave from the intersec-
tion at the earliest time. The kth job is obtained in a deterministic way, based on the concept of a partial schedule and the
corresponding schedule status.

A partial schedule S(k) contains the first k elements of a schedule. For each partial schedule, its schedule status is
X = (x(1), . . . , x(i), . . . , x(jIj)), where x(i) 2 [0, jC(i)j] counts the number of the elements in S(k) that are equal to i. In other words,

x(i) indicates that the first x(i) clusters on the route i have been scheduled. The kth job is the cluster cðsðkÞ ;xðs
ðkÞÞÞ.

In addition to ensuring the feasibility of each schedule, a nontrivial usage of this representation is that X(k) and s(k) are
state variables that can be directly obtained from S(k).

For the state space D of the scheduling model, each state is associated with a partial schedule S(k). For each S(k), the
corresponding state variables are defined as a tuple, (X, s, t, d), where s = s(k), t is the actual finish time of the kth job
(or the makespan of S(k)), and d is the cumulative delay for all k jobs. Each S(k) can be automatically interpreted as a phase
switching sequence (PSS). For the corresponding PSS, t is its finish time, and s is the current phase index at the finish time.
Both s and X can be directly obtained from S(k), whereas t and d are calculated. When necessary, a variable is referred to by
the stage k at which it occurs by using a superscript ‘‘k’’ (e.g., s(k) and t(k)).

For convenience, we define two unique X arrays, i.e., Xempty and Xfull, which have x(i) = 0 and x(i) = jC(i)j for "i, respectively,
corresponding to empty and full status, respectively. For any feasible schedule, its schedule status is always Xfull.

Each schedule can be iteratively constructed. The initial condition is the empty schedule S(0) that has (X, s, t, d) = (Xemp-

ty, ic, 0, 0), where ic is the current phase index at the stage 0. At the kth stage (k 2 [1, jSj]), S(k) is obtained by adding s(k) to
S(k�1), and the state variables are updated in Algorithm 1. In Line 1, X is updated by adding one to the route s(k). The kth
job is the cluster c(i,j), which has i = s(k), and j = x(i). In Line 2, Algorithm 2 is called for updating t and d. In Line 3, s is updated.

Algorithm 2 gives the details for adding the kth job, i.e., the cluster c. In Line 2, the MinSwitch operation returns the min-
imum time required for switching from i(A) to i(B), i.e.,
MinSwitchðiðAÞ; iðBÞÞ ¼
PjEj�1

e¼1
Y ði

ðeÞÞ þ
PjEj�1

e¼2
Gði

ðeÞÞ
min ; ð1Þ
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where the path E = (i(1), � � � ,i(e), . . . , i(jEj)), with i(1) = i(A), i(jEj) = i(B), and i(e+1) = next(i(e)) contains all unique phases to be passed
through during the phase switching process. In other words, the minimum green times are applied for any intervening
phases.

Algorithm 1. Updating for (X, s, t, d) of S(k)
Require: (1) (X, s, t, d) of S(k�1); (2) s(k)
Fig. 3. Schedules of jobs (clusters) and the corresponding phase switching
{s(k) is the element to be added}

1: i = s(k), x(i) = x(i) + 1, j = x(i)
 {Update the scheduling status X}

2: (t,d) = Algorithm 2, given (s, t, d) of S(k�1), and c(i,j)
 {The kth job to be added is c(i, j)}

3: s = s(k)
Algorithm 2. Calculation for (t, d) of S(k) (Subroutine)
Require: (1) (s, t, d) of S(k�1); (2) c
 {The cluster c is the kth job to be added}

1: i = RouteIndex(c) = s(k)
 {The cluster c is located on the route i = s(k)}

2: pst = t + MinSwitch(s, i)
 {The permitted start time of c}

3: ast = max(arr(c), pst)
 {The actual start time of c}

4: if (pst > arr(c)) and (s – i) then ast = ast + sult(i)
 {Considers the start-up lost time}

5: t = ast + dur(c)
 {The actual finish time of c}

6: dd = jcj �max(ast � arr(c), 0)
 {The local cumulative delay of c}

7: d = d + dd
 {The total cumulative delay of first k jobs}

8: return (t, d) of S(k)
The results of MinSwitch can be retrieved from a static jIj � jIj matrix with precalculated data, since all Y and Gmin values
are static. Thus, Proposition 2 can be obtained.
Proposition 2. Algorithm 2 can be executed in constant time.

The inherent control process from S(k�1) to S(k) is the extension of the corresponding PSS between [t(k�1), t(k)]. If pst is the
permitted start time for the kth job, as calculated in Line 2, then the PSS between [t(k�1),pst] is based on the minimum switch-
ing process from s(k�1) to s(k), and the phase index between [pst, t(k)] is s(k).

In Line 1, we simply indicate the fact that the route index of the kth job is s(k). In Lines 3 and 4, the actual start time of the
kth job is calculated, in which sult(i) is the start-up lost time (Sharma et al., 2007) on the route i. For the two conditions in Line
4, pst > arr(c) means that c has been a queue, and s(k�1) – s(k) means c is the first cluster for the current phase. Lines 5 and 6
are based on a simple model that the job duration (or processing time) is fixed, and the local cumulative delay (or weighted
tardiness (Koulamas, 2010)) is proportional to jcj.

The objective is to find a full schedule S⁄ with the minimal cumulative delay.
sequences.
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3.2.1. An example
A simple example is shown in Fig. 3 to illustrate the details of Algorithm 2 and the corresponding PSS construction pro-

cess. There are four, two, and two clusters on the routes 1, 2, and 3, respectively. The initial phase index is ic = 1. Each label
‘‘i, j’’ means the cluster c(i,j), i.e., the jth cluster on the ith route. We also provide two possible schedules S(A) and S(B) for these
clusters. The schedule S(A) is (1, 3, 1, 2, 2, 3, 1, 1). Taking k = 3 as an example, we have s = 1, X = (2, 0, 1), and the 3rd job is
c(1,2). For each corresponding PSS, the phases at different locations in a PSS are different phases, and thus their phase dura-
tions might be different, even if there are denoted by the same g(i).

The finish time t(k) at the kth stage is always the actual finish time of the kth job. Some jobs might be in the same phase,
e.g., the 4th and 5th jobs, i.e., the clusters c(2,1) and c(2,2).

Several typical cases are shown for the minimum switching process in Eq. (1). For k = 1, there are s(0) = s(1) = 1, thus E = (1),

and pst(1) = t(0) = 0. For k = 2, s(1) = 1 and s(2) = 3, thus E = (1, 2, 3), and Y ð1Þ;Gð2Þmin;Y
ð2Þ

� �
is the PSS between [t(1),pst(2)]. Note that

the minimum green time of phase 2 is included, since phase skipping is not allowed. For k = 3, s(2) = 3 and s(3) = 1, thus
E = (3,1), and (Y(3)) is the PSS between [t(2), pst(3)].

For the actual start time in Lines 3 and 4 of Algorithm 2, five jobs (k = 1, 3, 4, 5, 6) have not become a queue yet, the 8th job
is not the first cluster in its phase, and only two jobs (k = 2, 7) are further delayed by start-up lost times. All delayed clusters
(k = 2, 7, 8) contribute to the local cumulative delay that is calculated in Line 6 of Algorithm 2.

The schedule S(B) is (3, 1, 1, 2, 2, 3, 1, 1), which is only different from S(A) in the first two elements. As will be shown in
Theorem 1, S(B) can be removed at k = 3, since Sð3ÞðAÞ and Sð3ÞðBÞ have the same (X, s), and (t, d) of Sð3ÞðBÞ is dominated by (t,d) of Sð3ÞðAÞ.

3.2.2. Properties
For the scheduling model, the state spaceD is a much smaller subspace of the underlying state space X. As can easily be seen,

the space reduction achieved via the PSS extension at each stage of the scheduling model is significant relative to the single time
step D that is used to search X. In other words, each decision made at each stage of the scheduling model can be seen as a ‘‘heu-
ristic leap’’ over multiple stages in X, or equivalently as a bundle of simple heuristics that utilize problem features.

The first heuristic that is incorporated is ‘‘do not split a cluster’’, based on Assumption 1. Each cluster is either present in
the atomic form or aggregated as a critical interval (Dunne and Potts, 1964; Viti and van Zuylen, 2010) or an anticipated
queue (Lämmer and Helbing, 2008). This aggregate clusters tend to promote a high flow rate, as each aggregation increases
the cluster’s duration. To split such a cluster is normally not a promising choice due to rather long intergreen times and start-
up lost times that are wasted in a phase switching process. Naturally, each stage is defined at the finish time of each job.

Two additional heuristics motivate use of the minimum switching process in Eq. 1. The second heuristic is ‘‘do not explore
in an idle time period’’ between the earliest permitted and actual start times of a job. Each idle time period leads to some
neighboring PSS alternatives that have the same objective value, and only one representative for them is enough. The third
heuristic is ‘‘do not intentionally defer a scheduled cluster’’, i.e., a cluster departs from the intersection at the earliest start
time after it is scheduled. Any deferring time duration can only increase the cumulative delay at the intersection.

Given a schedule status X, the order of the jobs on the same route satisfies the precedence constraints in Assumption 2,
whereas the order of jobs on different routes is unknown.

Proposition 3. The number of states with the same X is PðXÞ ¼
PjIj

i¼1xðiÞ
� �

!=
QjIj

i¼1ðx
ðiÞ!Þ.

Only full schedules are considered as potential solutions. Based on Proposition 3, The total number of full schedules is
P(Xfull). Given the huge number of possible schedules, it might be reasonable to argue that promising schedules in D have
a great possibility to overlap with (near) optimal solutions in the underlying state space X.

The schedule status X not only indicates which clusters have left the intersection, but also identifies which clusters have
not yet left (the complement of X) on each route. Based on Proposition 3, many states shares the same X. Proposition 4 gives
an essential property.

Proposition 4 (Nondecreasing). For Algorithm 1, (t, d) of S(k) are nondecreasing with respect to (t, d) of S(k�1), given all other
inputs, i.e., (X, s) of S(k�1) and s(k), are same.

The proof is straightforward, since both dd and t(k) in Lines 5 and 6 of Algorithm 2 are nondecreasing with t(k�1), and
d(k) = d(k�1) + dd in Line 7.

Thus, some states in D can be eliminated at the early stage, as shown in Theorem 1.

Theorem 1. (Elimination Criterion). For two partial schedules SðkÞðAÞ and SðkÞðBÞ with the same (X,s), if (t,d) of SðkÞðBÞ is dominated by that

of SðkÞðAÞ, i.e., t of SðkÞðAÞ
� �

6 t of SðkÞðBÞ
� �

and d of SðkÞðAÞ
� �

6 d of SðkÞðBÞ
� �

, then SðkÞðBÞ can be eliminated without loss of optimality.

Proof. Given the same (X, s), we can consider two arbitrary full schedules S(A) and S(B) that are different only in the order of

the first (k � 1) elements corresponding to SðkÞðAÞ and SðkÞðBÞ, and thus their X(k) and s(k) elements are always the same as k

increases to jSj. Based on Proposition 4, if (t, d) of SðkÞðAÞ dominates that of SðkÞðBÞ, then the dominance relation holds for the

(k + 1) th stage. Thus, (d of SðjSjÞðAÞ Þ 6 d of SðjSjÞðBÞ
� �

. h
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Compared to existing single-machine total weighted tardiness scheduling problems (Koulamas, 2010; Du and Leung,
1990), this scheduling model has the special feature that jobs sharing the same route are subject to precedence constraints
on that route. Furthermore, there are two nontrivial properties from the traffic control problem, i.e., the number of routes jIj
is small, and the number of time steps in the prediction horizon jHPj is limited.

3.3. Optimization procedure

In Section 3.2, we have defined the state spaceD of possible partial schedules, with the state variables (X, s, t, d) describing
each partial schedule. In this section we specify a procedure for obtaining the optimal solution in this space.

The optimization procedure gains its power by efficient state elimination. The actual state grouping at each stage is based
on Theorem 1. A forward recursion process is then used for obtaining the optimal schedule. The overall time complexity is
obtained from analysis of the upper bound of the group size and the optimization horizon.

3.3.1. State grouping and retrieval of partial schedule
The states in D are organized into state groups. A state group is defined as a tuple (X,s), in which X is the schedule status,

and s 2 [1, jIj] means that the last job is scheduled on the route s. Each state group contains a table of value rows, in which
each value row contains four elements, i.e., ð~t; ~d;~s; ~yÞ, and j(X, s)jP 0 is the actual numbers of value rows.

At each stage k, states are organized into multiple groups, where
PjIj

i¼1xðiÞ ¼ k for each group (X,s). Although the size of a
state group can be very large in theory (Proposition 3), many states in the group can be eliminated at a given stage k, based
on Theorem 1.

For a given state group (X,s), each row index y (or the yth value row) corresponds to a unique state, i.e., a partial schedule

SðkÞ k ¼
PjIj

i¼1xðiÞ
� �

, in which each job element can be obtained by tracking back through the state space by using ð~s; ~yÞ, as

shown in Algorithm 3. For this partial schedule S(k), the corresponding state variables are ðX; s;~t; ~dÞ, and ~d is the correspond-

ing cumulative delay, where ð~t; ~dÞ are in the yth value row of (X,s).

Algorithm 3. Retrieval of the partial schedule S(k) from the tuple (X, s, y)
1: for l = k to 1 do

2: s(l) = s
 {The lth element of S(k)}
3: ðs; yÞ ¼ ð~s; ~yÞ in the yth value row of (X, s), and xðs
ðlÞÞ ¼ xðs

ðlÞÞ � 1

4: end for
 n o

5: return S(k) = (s(1), . . . , s(l), . . . , s(k))
 jSðkÞj ¼

PjIj
i¼1xðiÞ
3.3.2. Forward recursion
Algorithm 4 describes the forward recursion process. Initially, only the state group (Xempty,ic), in which ic is the initial

phase index at the stage 0, has one value row (0, 0, �, �). This initial state is corresponding to the empty schedule S(0), which
has s(0) = ic, t(0) = 0, and d(0) = 0. For all other state groups (X, s), their value rows need be calculated.

The forward recursive process starts with k = 1, proceeds recursively to k = k + 1, and terminates until k = jSj. At the kth
iteration, the set X(k) is collected. Then for "X 2 X(k) and "s 2 [1, jIj], each state group (X, s) is calculated by Algorithm 5. Here
the state group (X, s) means the kth job is added on the route s, thus Line 4 contains a condition x(s) > 0, where x(s) is the sth
element of X. Using the set X(k) is only a naive way for ensuring that all input state groups, i.e., (XO, sO) for "sO 2 [1, jIj], are
available in Algorithm 5.

Algorithm 4. Forward recursion process for calculating all state groups
Require: (Xempty, ic) has one value row (0, 0, �, �)
 {The empty schedule S(0)}

1: for k = 1 to jSj do n o

2: Collects the set XðkÞ ¼ X :

PjIj
i¼1xðiÞ � k
3: for "X 2 X(k), "s 2 [1, jIj] do

4: if x(s) > 0 then Execute Algorithm 5 for calculating the state

group (X, s)

5: end for

6: end for

7: return The solution S��
 {By tracking back from the state

ðXfull; arg mins;y
~dðXfull;s;yÞÞ}
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Algorithm 5. Calculation of the value rows in the state group (X, s)

Require: the state groups (XO, sO) for "sO 2 [1, jIj], where XO = X with x(s) = x(s) � 1
1: c ¼ cðs;x
ðsÞÞ
 {The job to be added is the x(s)th cluster on the route s}
2: for sO = 1 to jIj do

3: for yO = 1 to jðXO; sOÞj do
4: ðtO; dOÞ ¼ ð~t; ~dÞ in the (yO)th value row of (XO,sO)

5: (t, d)=Algorithm 2, given (sO, tO, dO), and c

6: if t 6 HO then StateManager(X, s) (t, d, sO, yO)
 {Examines each value row}

7: end for

8: end for
Algorithm 5 collects the value rows in the state group (X, s), in which each value row corresponds to a state. Line 1 gives
the new job c to be added. Line 2 refers to the last phase index sO of the previous state group (XO, sO), and Line 3 gives the row
index for each previous state. Line 4 then retrieves the previous state variables ð~t; ~dÞ, and Line 5 is used for updating the state
variables of the current state after adding the new job c.

In Line 6, StateManager maintains the value rows for each group (X, s). This is the key step where dominated states are
eliminated. We define two extreme StateManager modes:

� The ‘‘greedy’’ mode simply maintains an incumbent value row, and replaces it by each input value row if it has a smaller ~d.
� The ‘‘full’’ mode stores a complete set of non-dominated value rows. The complete set contains all value rows that are not

dominated by any other value rows, based on the dominance comparison on the (~t; ~d) values. Note that only one is kept if
some value rows have the same (~t; ~d) values.

The solution S�� can be obtained by the retrieval process in Algorithm 3 that starts from the state ðXfull; s��; y��Þ, in which s��; y��

are the results of arg mins;y
~dðXfull ;s;yÞ, and ~dðXfull ;s;yÞ is the ~d value in the yth value row of the state group (Xfull, s).

3.3.3. State group size
Compared to X, the additional information that is given in (X, s) is the last scheduled cluster cðs;xðsÞÞ. Thus, the group size

j(X, s)j is still of exponential scale prior to any state elimination, based on the result of P(X) that is obtained in Proposition 3.

Proposition 5. For each valid state group (X, s) with x(s) > 0, the total number of possible states is j(X, s)j = P(XO), in which XO is
equal to X with x(s) = x(s) � 1.

Based on Theorem 1, however, all dominated states in each state group (X, s) can be eliminated without loss of optimality,
as in the ‘‘full’’ StateManager mode. This leads to a nontrivial proposition that j(X, s)j can be compressed from an exponential
size to jHOj.

Proposition 6. Each j(X, s)j is bounded by jHOj, i.e., the number of time steps in HO.
Proof. Note that HO and all ~t values are rounded by the time resolution. For the dominance comparison of (X, s), the value
rows with the same ~t value can be compared together to keep the one with the minimal ~d value. Any value row will be elim-
inated if it has ~t > HO. h

The states in D can be seen as being grouped by using (X, s, t). Each (X, s, t), if exists, is a subgroup of (X, s), and only keeps
the element with the minimal ~d value.

3.3.4. Optimization horizon
Suppose the finish time of the optimal schedule S⁄ in the state spaceD is H�O, and the minimum and maximum finish times

of all schedules are Hmin
O and Hmax

O . In Algorithm 5, only those schedules with makespans shorter than HO will be candidates.
Thus, Algorithm 4 might lose the optimal solution if HO < H�O, and even return no solution if HO < Hmin

O .
The actual finish time of any feasible schedule can be used as HO to ensure at least one solution. For example, a naive all

clearing schedule, AllClear(nc), sets HO as that the sum of the clearance times of all routes pluses the intergreen times in nc
cycles (nc P 1).

In addition, such a horizon is quite likely to be a large enough bound to contain H�O, if there is a high correlation between a
short finish time and a low cumulative delay.

Finally, Hmax
O is limited in the scheduling space D, as shown in Proposition 7.

Proposition 7. In the scheduling search space D; jHmax
O j is polynomial in jHPj.
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3.3.5. Complexity
The efficiency of SchIC depends mainly on the number of state updates in the optimization procedure that is described in

Algorithm 4.

Proposition 8. Algorithm 4 has the worse case of SG � jIj2 �
QjIj

i¼1ðjC
ðiÞj þ 1Þ state updates, in which SG = maxX,sj(X, s)j, and each

state update contains Lines 4–6 of Algorithm 5.

Here
QjIj

i¼1ðjC
ðiÞj þ 1Þ is the number of possible X arrays, i.e.,

PjSj
k¼1jXðkÞj in Algorithm 4. SG is the upper bound for Line 3 in

Algorithm 5, which is dependent on the choice of StateManager. jIj2 is from Line 3 in Algorithm 4 and Line 3 in Algorithm 5.
For each state update, the main step in Line 5 of Algorithm 5 is finished in constant time (Proposition 2).

Proposition 9 summarizes the complexity of the ‘‘greedy’’ and ‘‘full’’ modes based on Proposition 8, where the SG values
are respectively equal to 1 and no larger than jHOj (based on Proposition 6), and there is jCðiÞj 6 jHðiÞP j for "i
(based on Proposition 1).

Proposition 9. For Algorithm 4, the ‘‘greedy’’ mode has the worse case of jIj2 �
QjIj

i¼1ðjH
ðiÞ
P j þ 1Þ state updates, and the ‘‘full’’ mode

has jHOj times more updates than the ‘‘greedy’’ mode.

The ‘‘greedy’’ mode can work with an unlimited HO, although it is not guaranteed to be optimal. The ‘‘full’’ mode is optimal
in the scheduling space D if HO P H�O. Note that jHOj of AllClear(nc) and jHmax

O j in the space D are polynomial in jHPj (Propo-
sition 7).

3.4. Extension decision

After the optimization process, a solution S�� is obtained. The complete phase switching sequence (PSS) need not actually
be generated, since only the first job is used, if available.

There are two choices for the extension decision:

(1) ext = 0, if jS��j � 0, or s(1) – ic, or arr(c1) P SwitchBack(ic).
(2) ext = dep(c1), otherwise.

Here s(1), arr(c1), and dep(c1) are respectively the route index, the expected start and departure times of the first job
c1 ¼ cðsð1Þ ;1Þ of S��. SwitchBackðiÞ ¼ MinCycle� GðiÞmin is the minimum time required for the traffic light to return to the phase in-
dex i in one cycle.

The condition jS��j � 0 simply means that there is no clusters on all routes. The condition s(1) – ic indicates a straightfor-
ward phase switching process. The long idle time duration before the first job is explicitly squeezed out, if there is
arr(c1) P SwitchBack(ic).

The current phase is only extended to dep(c1). Afterward, the traffic situation will be re-evaluated in the next roll step
when new flow information is available.

4. Experiments

We evaluate the performance of traffic control algorithms in simulation using an open-source microscopic road traffic
simulator, Simulation of Urban Mobility (SUMO) (Krajzewicz et al., 2002). SUMO was chosen principally because of its acces-
sibility, and although it is not as sophisticated and full-featured as some other commercial simulation products (e.g., VISSIM,
CORISM, AIMSUN, Paramics), SUMO’s car following model (by Krauss) is comparable (Brockfeld et al., 2004).

Both solution quality and computational cost are measured. For the measure of solution quality, we report the average
speed(Vn) and waiting time (Tw) per vehicle over a given set of approaches to the intersection. Here Vn is equal to the total
travel distance for all vehicles divided by the total travel time for all vehicles. If the total travel distance is a constant, the
travel time is varying inversely to Vn. The difference between the average travel time and delay for all vehicles is a constant.
Tw is related to the average delay, but Tw does not include the delay during acceleration/deceleration processes. For the mea-
sure of computational cost, we report the number of roll steps (Nrs) and total CPU time (Tcpu) per run. The average CPU time per
roll step can be calculated as Tcpu/Nrs. In a given time period, Nrs is varying inversely to the average roll interval. A shorter
average roll interval leads to a tighter bound on the execution interval and more frequent communication with sensors,
although the solution quality might be improved due to a quicker revision of TL-PSS (Cai et al., 2009). The computation
was executed by JAVA Runtime Environment 1.6 on 3.4 GHz AMD Phenom II. For each instance, we calculate the mean of
100 independent runs. Both Tw and Tcpu are reported in seconds, and Vn is reported in m/s.

Our tests use two ideal scenarios, including an isolated intersection and an artery network, and one real-world scenario
that is located in the downtown area of Pittsburgh, PA.

Route flow information is obtained by basically using the hybrid technique described in Sharma et al. (2007), which uses a
stop-line detector and an advance detector at a fixed distance (Ldet) upstream on each entry approach. The sampling interval
is samp = 1 s. This technique provides a prediction horizon HP = Ldet/vF for the vehicle movements on each road, in which vF is
the free-flow speed (Sharma et al., 2007; Mirchandani and Head, 2001). The current queue size is continuously updated
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according to the difference between the number of expected arrival vehicles and the actually departed vehicles at the stop
line (Sharma et al., 2007; Boillot et al., 2006; Mirchandani and Head, 2001). If an entry approach has movements in different
phases (e.g., one phase for protected left turn and another for through traffic and right turn), the flow data can be allocated to
corresponding routes by applying turning movement proportions (Cremer and Keller, 1987; Mirchandani and Head, 2001). If a
phase services multiple movements (on the same or different entry approaches), the data in all these traffic movements are
simply merged into the corresponding route.

The model parameters, i.e., vF, sult, and sfr, can be estimated from historical traffic data (Sharma et al., 2007; Mirchandani
and Head, 2001). On each route, sfr = Nlane/shw, where Nlane is the number of lanes, and shw is the saturation headway, i.e., the
average headway between vehicles during saturated flow. In our experiments, vF on each approach is equal to the speed lim-
it, and there are sult = 3.5 s and shw = 2.5 s on each route. Turning movement proportions, if required, can be dynamically
estimated by some classic methods (Cremer and Keller, 1987; Mirchandani and Head, 2001).

4.1. Traffic control methods

Four SchIC versions are evaluated. The version SchICF0 uses the ‘‘full’’ StateManager module, but does not use any aggre-
gation techniques. The version SchICF1 also aggregates the anticipated queue. The version SchICF2 further incorporates the
threshold-based clustering. The version SchICG2 uses the ‘‘greedy’’ StateManager module and both aggregation techniques.
For the threshold-based clustering, thc = 3 s.

For the ‘‘full’’ mode, we set HO as the finish time of AllClear(2), the naive all clearing schedule that is defined in Section
3.3.4. For the ‘‘greedy’’ mode, there is no limit on HO.

We compare SchIC versions to a vehicle-actuated logic (VA) (Dunne and Potts, 1964; Shelby, 2004), and an approximate
dynamic programing procedure called Controlled Optimization of Phases (COP) (Sen and Head, 1997). In addition, a fixed
coordination plan (FIX), and two time-of-day fixed timing plans obtained by SYNCHRO (Husch and Albeck, 2003) are consid-
ered for specific scenarios. All traffic control strategies satisfy the signal timing constraints, including the minimum and
maximum green times.

The vehicle-actuated logic (VA) is a reactive traffic control strategy (Dunne and Potts, 1964; Shelby, 2004; Papageorgiou
et al., 2003; Viti and van Zuylen, 2010). Under the assumption of a constant vehicular arrival rates, this method is shown to
be stable and is usually the optimum for a proper choice of control constants (Dunne and Potts, 1964). In this paper, VA is
applied on simple scenarios where each route is an entry approach. The current phase is extended if there is a queue or the
observed vehicle headway is not larger than the critical interval (Papageorgiou et al., 2003) (or extension unit (Viti and van
Zuylen, 2010)). Otherwise, the traffic controller switches to the next phase. In this paper, the critical interval is set as 3 s, the
same as in Viti and van Zuylen (2010).

COP is the intersection control algorithm used in RHODES (Mirchandani and Head, 2001). It is one of the quickest algo-
rithms to produce high-quality solutions using a 30-step prediction horizon, as shown in a comparison (Shelby, 2004) to
OPAC, ALLONS-D, and PRODYN.

For the comparison, our implementation of COP follows the detailed description in Sen and Head (1997), and we consider
the variant with a fixed phase sequence, as used in Shelby (2004) and RHODES.

We tested three COP versions. COP0 and COP1 are only different in the optimization horizon settings: COP0 uses the pre-
diction horizon HP (as in the original setting (Sen and Head, 1997)), whereas COP1 and COP2 use the same optimization hori-
zon with SchICF0 for fully clearing all queuing and arriving vehicles in the horizon. For the rolling horizon process, both COP0
and COP1 extend to the end of the first phase in the optimal PSS (Mirchandani and Head, 2001). COP2 is a variant of COP1, in
which the extension interval is capped with a maximum of 5 s.

The time resolution (D) in the optimization horizon is 0.5 s, as used in Cai et al. (2009). This choice enables all the tem-
poral variables to be rounded without significant error.

4.2. Ideal scenarios

We consider two ideal scenarios, i.e., an isolated intersection and an arterial network, for evaluating the essential perfor-
mance of traffic control strategies, respectively on intersection optimization and implicit coordination between neighbor
intersections.

For the two simple scenarios, each road has an identical length (L), and each entry approach is active in one phase. On
each road, the speed limit is 10 m/s. Each intersection has two phases. By default, the signal timing constraints are Gmin = 5 s,
Gmax = 55 s, and Y = 5 s, for all phases of every intersection.

4.2.1. Isolated intersection
The isolated intersection scenario with two entry approaches is used for testing the essential performance of traffic con-

trol strategies, thus the prediction horizon is long enough and no network-level effect is included. In the real world, such an
isolated intersection might be located on a rural road or a major urban road. For each entry approach, the length (L) is 750 m,
and the location of the advance detectors is Ldet = 700 m, which corresponds to a 70-s prediction horizon (Ldet/vF) with
140 time steps, for the look-ahead optimization strategies (COP and SchIC). This prediction horizon is slightly shorter than



Fig. 4. Average speeds at the isolated intersection with different demands.
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the 75-s horizon used in Shelby (2004). In each run, the total simulation period was 1 h, and the traffic demand proportions
between two entry approaches were shifted every twenty minutes as follows: 0.3:0.7, 0.5:0.5, and 0.7:0.3.

Figs. 4 and 5 show the two performance metrics, i.e., Vn and Tcpu, obtained by VA and the COP and SchIC versions on the
isolated intersection with different demands. Table 1 gives the data for the demands 2 {600, 900, 1200} vehicles per hour.

As shown in Fig. 5 and Table 1, all SchIC versions can reduce the computational cost significantly without sacrificing solu-
tion quality. The two aggregation techniques can lead to better performance, which might due to that the further aggregation
reduce the significance of errors in arr and dur values of clusters in each C. In the following comparison, SchICG2 is picked as a
representative for the SchIC versions, since it is the most efficient SchIC version.

Another observation on the data in Table 1 is that the number of state updates (Nss/rs) of SchICF2 is only a little higher than
that of SchICG2, which means that the average size of state groups is not large for the ‘‘full’’ mode of the StateManager module.
In other words, the elimination criterion is able to eliminate most value rows in a state group.

It might be most fair to compare the performance of the optimization procedures of SchICF0 and two COP versions, i.e.,
COP1 and COP2, since they use the same optimization horizon, and the two aggregation techniques are not applied on
the flow representation of SchICF0. As shown in Table 1 and Fig. 5, SchICF0 obtains higher solution quality than COP1 and
COP2 with reduced computational cost.

The performance curve of a high-quality traffic control strategy can be divided into two regions, i.e., slowly decreasing in
the linear region for low demands and rapidly decreasing in the saturation region for high demands. This is a basic feature in
general flows. The performance can be significantly improved in the saturation region, given an effective utilization. As
shown in Fig. 4, SchICG2 performs better than all COP versions. Furthermore, the COP and SchIC algorithms obtain higher
Vn values than the vehicle-actuated strategy (VA), which might be due to the using of a longer prediction horizon.

As shown in Table 1, the number of roll steps (Nrs) of all COP and SchIC versions decreases when the demand increases,
except for COP2, which sets a cap on the roll interval. The numbers of state updates per roll step (Nss/rs) of all SchIC versions
are much lower than that of all COP versions, as shown in the case with 1200 vehicles. SchICG2 requires only 44 state updates,
given that the prediction horizon contains 140 time steps, and the optimization horizon is even longer for higher demand.

For an effective control, the maximum green time should be large if the degree of saturation is high, according to Web-
ster’s optimal cycle-time formula. Fig. 6 gives the performance of VA, three COP versions, and SchICG2 on the single intersec-
tion scenario with different maximum green times. The COP versions and SchICG2 utilize the increase of Gmax well for
enhancing Vn. Among all algorithms, SchICG2 achieves the best performance.

For the three flow parameters, vF has the most influence on the accuracy of the arrival times of all clusters, whereas sult
and shw only influence the queue clearance time. Fig. 7 investigates the robustness of SchICG2 with different vF settings when
the demands are {600, 900, 1200} vehicles. The performance remains well for the ratios between [0.8, 1.2].
4.2.2. Arterial network
As shown in Fig. 8, the arterial network includes one bottleneck intersection O and four controllable intersections A–D.

The intersection O is controlled by a fixed timing plan with the split of 35 s to traffic on the artery in the cycle of 70 s. Only
the entry approaches for A–D will be taken into account for performance evaluation. In real world, the intersection O can be
seen as the boundary of a control zone. For each intersection, one phase services for a one-way side road, and another for the
artery. To study the implicit coordination for traffic control between neighbor intersections, we only consider short predic-
tion horizon intervals: For each entry road, there are L = 250 m and Ldet = {50, 100, 150, 200} m, i.e., {5, 10, 15, 20}-s predic-
tion horizon intervals.

The simulation period is 1 h. Incoming traffic is divided among the roads with the proportions shown in Fig. 8, based on
the total traffic demand. No turns occur at any intersection except C, which has an additional turning movement rt. For the
artery, we set re + rw = 7/16. By default, there is rw = 0, which turns the artery into a one-way road. The movement rs can be



Fig. 5. Average CPU times at the isolated intersection with different demands.

Table 1
Performance at the isolated intersection with different demands.

600 Vehicles 900 Vehicles 1200 Vehicles

Vn Tcpu Nrs Vn Tcpu Nrs Vn Tcpu Nss/rs Nrs

VA 8.22 – – 7.85 – – 3.93 – – –
COP0 8.29 3.287 333 7.80 2.078 190 4.52 1.386 1.88E + 04 118
COP1 8.30 41.82 338 7.82 32.73 197 4.69 117.4 7.87E + 05 120
COP2 8.31 83.50 671 7.86 112.0 659 4.83 704.3 8.37E + 05 677
SchICF0 8.39 0.110 669 8.01 0.204 462 5.05 0.116 7.49E + 02 134
SchICF1 8.38 0.093 557 8.00 0.111 329 5.23 0.025 9.35E + 01 109
SchICF2 8.39 0.064 556 8.01 0.073 331 5.27 0.018 5.67E + 01 110
SchICG2 8.38 0.021 566 7.99 0.020 337 5.22 0.009 4.33E + 01 111

Fig. 6. Average speeds on the intersection with different maximum green times (the demand is 1200 vph).
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set to an arbitrary proportion since it does not contribute to the performance evaluation. For simplicity, we set rs + rt = 5/16.
By default, there is rt = 0.

Table 2 reports the results of COP versions and SchICG2 in the control zone, given different demands and Ldet locations. The
arterial waiting time Tw,art includes only the four arterial roads leading to intersections A–D, whereas non-bottleneck waiting
time Tw,nb includes all tw entry approaches leading to these intersections. The performance of these algorithms become
better as the prediction horizon is longer. SchICG2 and COP2 obtain the lowest Tw,nb values, but COP2 incurs higher
computational cost and more roll steps. COP0 cannot optimize when the optimization horizon (5 s for Ldet = 50 m) is not
larger than the intergreen time between two phases.

Table 3 reports the results of FIX, VA, COP versions and SchICG2 for Ldet = 100 m and different demands. The fixed timing
plan (FIX) explicitly coordinates the intersections A–D, which uses 43/17 s splits and 28 s offsets that is chosen by local
search by maximizing the average speed as well as satisfying the constraint of Tw,art = 0 when rt = 0.

Traditionally, the coordination between intersections is indicated by achieving ‘‘green waves’’. In this scenario, green
waves on the artery can be indicated from a rather small Tw,art value. In this sense, VA is not able to achieve coordination,



Fig. 7. Average speeds at the isolated intersection with different free-flow speed settings.

Fig. 8. The arterial network (rs + rt = 5/16, re + rw = 7/16).

Table 2
Performance at the arterial network with different Ldet locations (1500 vehicles).

Ldet = 50 Ldet = 100 Ldet = 150 Ldet = 200

Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb Tcpu Nrs

COP0 135 91.8 4.43 6.76 5.28 7.79 2.59 7.26 0.112 1330
COP1 2.21 5.70 1.48 4.95 0.76 4.67 0.22 4.79 2.517 1104
COP2 1.77 5.04 1.01 4.24 0.26 4.02 0.06 4.07 6.954 2667
SchICG2 1.78 5.04 0.29 3.71 0.10 3.52 0.11 3.59 0.030 1942

Table 3
Performance at the arterial network with different demands (Ldet = 100 m).

300 Vehicles 600 Vehicles 900 Vehicles 1200 Vehicles 1500 Vehicles

Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb Tw,art Tw,nb

FIX 0.00 5.96 0.00 6.04 0.00 6.15 0.00 6.07 0.00 6.41
VA 6.84 5.33 7.13 5.97 7.15 6.68 7.27 7.52 7.67 8.43
COP0 0.65 1.15 1.17 2.34 1.73 3.45 2.72 4.90 4.43 6.76
COP1 0.39 0.83 0.61 1.89 0.72 2.86 1.07 3.93 1.48 4.95
COP2 0.32 0.74 0.52 1.64 0.58 2.49 0.73 3.40 1.01 4.24
SchICG2 0.26 0.57 0.35 1.23 0.34 2.05 0.27 2.90 0.29 3.71
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whereas SchICG2 achieves good coordination (Tw,art is 0.29 s) even as the prediction horizon is short (10 s for Ldet = 100 m) and
demand is moderately high (1500 � (7 + 1)/16 = 750 vph). Moreover, the overall objective should include the performance on
side streets, although achieving ‘‘green waves’’ on the artery might be a good sign. FIX has perfect results on Tw,art, but its
Tw,nb is rather high. SchICG2 achieves the lowest Tw,nb among these strategies.

Fig. 9 shows the average speeds obtained by different control methods at the arterial network with Ldet = 100 m (i.e., a
10-s prediction horizon), given different demands. Here VA is not included in the figure because its solution quality is much
worse. For FIX, the average speed only decreases a little when the demand increases for the current scenario. SchICG2

performs better than FIX when demand is less than 1000 vehicles.
The coordination behavior of a fixed strategy might be brittle if there is disturbance on traffic flow. Fig. 10 shows the

results for an additional turn movement with different ratios (rt in Fig. 8) on the side street of C, Ldet is 100 m and the demand



Fig. 9. Average speed at the arterial network with different demands.

Fig. 10. Average speeds at the arterial network with different rt values.

Fig. 11. Average speeds at the arterial network with different demands and varied re:rw proportions.
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is 1500 vehicles per hour. Due to a spillback, the performance of FIX drops much quicker than the adaptive strategies. SchICG2

performs better than FIX when rt > 1/32 (about 47 vehicles).
To understand more about the dynamic behavior of SchIC, we set rt = 0, but re:rw proportions are changed as 7:0, 4:3, and

1:6, every twenty minutes. Thus the artery contains two-way flows, and the major flow becomes west-bound during the last
time period.

Fig. 11 shows the average speeds obtained by different control methods at the arterial network with Ldet = 100 m. Here the
performance of FIX drops significantly. Furthermore, SchICG2 still achieves better performance than the COP versions. The
comparison might be unfair for FIX, but major flows do change in the real world. Nevertheless, the results do demonstrate
that SchIC can achieve quite good implicit coordination for a two-way artery.



Fig. 12. Downtown Pittsburgh traffic network with 32 intersections.
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In summary, a high-quality intersection control strategy can achieve strong implicit coordination between intersections,
or at least perform better than a fixed coordination strategy, if the prediction horizon is not too short and the demand is not
too high. A nontrivial implication is that a complex traffic network can be decomposed into sub-networks by cutting some
links that do not require explicit coordination. Furthermore, a traffic-adaptive strategy might be more robust than a fixed
strategy if there are variations in the traffic flow.

4.3. Real-world scenario

Fig. 12 shows the real-world road network of the downtown area of Pittsburgh, PA, which includes the triangle area sur-
rounded by Grant Street, 11th Street, Penn Avenue, and 5th Avenue. Among a total 32 intersections, there are 22 intersec-
tions with two phases (of which four have an additional all-red pedestrian clearance interval), 8 intersections with three
phases, 1 intersection with one phase plus a pedestrian clearance interval, and 1 intersection with four phases. Most roads
allow two-way traffic. The number of lanes on each road ranges from 1 to 3. On each road, the speed limit is 12 m/s.

For the Pittsburgh downtown network, we considered two time-of-day periods corresponding to a off-peak hour and a
mid-day hour, called ‘‘non-event’’ and ‘‘midday’’.2 These two periods have average vehicle demands of 3933 and 4786 vehi-
cles per hour (vph), respectively. For each time-of-day period, the total simulation time is 4 h.

4.3.1. Results by SYNCHRO
The coordinated signal timing plans currently used to control the Pittsburgh downtown network, including cycle times,

splits, and offsets for all intersections, were provided to us by the city and generated using SYNCHRO (Husch and Albeck,
2003), given the traffic signal settings and turning movement counts in various time-of-day periods. SYNCHRO is a widely
available, and frequently used commercial software for off-line optimization. As shown in Kamarajugadda and Park (2003), it
is difficult to achieve a significant improvement over SYNCHRO. Although VISGAOST (Stevanovic et al., 2008) made some
progress on arterial optimization, it is still a challenge to improve overall performance for a complex network without obvi-
ous traffic arteries.

For the two fixed signal timing plans produced by SYNCHRO, the results are VS
n ¼ 4:99 m=s and TS

w ¼ 78:23 s for ‘‘non-
event’’, and VS

n ¼ 4:90 m=s and TS
w ¼ 80:98 s for ‘‘midday’’, respectively.

4.3.2. Local improvement
Although SYNCHRO produces coordinated signal plans that work well on microscopic traffic patterns, it is not able to uti-

lize the nontrivial second-by-second variability in microscopic traffic flow information. As shown in Section 4.2.2, SchIC can
be expected to outperform fixed coordination if the prediction horizon is not too short and the traffic demand is not too high.
Thus, a natural extension is to locally control a small set of intersections to enhance real-time adaptivity while not impeding
the coordination, given that all other intersections are still controlled by the fixed plans obtained by SYNCHRO.
2 The turning movement counts of all intersections in both periods can be obtained from authors.



Table 4
Percent improvement over the fixed plans by SYNCHRO and computational cost of SchICG2 on the {8,10, 12}-intersection cases.

‘‘Non-event’’ ‘‘Midday’’

Vn Tw Tcpu Nrs Vn Tw Tcpu Nrs

6-Intersections 5.69% 14.31% 0.255 10,366 5.27% 13.89% 0.311 11,836
8-Intersections 6.41% 16.28% 0.254 13,884 6.03% 16.07% 0.315 15,737
10-Intersections 7.96% 19.70% 0.319 17,473 7.36% 18.83% 0.384 19,559
12-Intersections 8.65% 21.90% 0.359 20,078 8.46% 21.76% 0.417 22,456

Table 5
Percent improvement over the fixed plans by SYNCHRO and computational cost of SchICG2 on the 6-intersection case with different Gmin constraints.

‘‘Non-event’’ ‘‘Midday’’

Vn Tw Tcpu Nrs Vn Tw Tcpu Nrs

Gmin = 15 4.98% 12.55% 0.201 7822 4.58% 12.22% 0.237 8744
Gmin = 20 3.90% 9.82% 0.157 6188 3.37% 9.24% 0.196 6908
Gmin = 25 2.95% 7.31% 0.140 5225 2.52% 6.92% 0.165 5858
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To investigate this possibility, we selected a small set of intersections to be adaptively controlled. For each intersection
identified to be under adaptive control, we assumed that advance detectors were placed on the upstream end points of entry
approaches. As a default, settings of Gmin = 10 s and Gmax = 60 s were used, and all Y values were kept the same as in the ori-
ginal settings. To select the subset of intersections to be adaptively controlled, a small set of runs on different time-of-day
scenarios were made with each of the 32 intersections being the sole adaptive intersection. Any intersection yielding better
network performance than that of the fixed plans generated using SYNCHRO when operated in traffic-adaptive mode was
collected as a selection candidate, and the top n candidates were then incorporated as adaptively controlled intersections
for the experiment.

Table 4 gives the performance on SchICG2 on the {6, 8, 10, 12}-intersection cases (the six adaptively controlled intersec-
tions are marked with s, and additional selected intersections are incrementally marked with h in Fig. 12). The 6-intersec-
tion case contains two three-phase intersections and four two-phase intersections. The percent improvement over the fixed
plans produced by SYNCHRO are reported for Vn and Tw over the entire network, i.e., 1� VS

n=Vn

� �
and 1� Tw=TS

w

� �
respec-

tively. The computation cost is also listed. Compared to the fixed plans produced by SYNCHRO, the percent improvement can
be over 8% on Vn and over 20% on Tw, whereas the computational cost remains low.

Urban intersections can require long minimum green times for pedestrian crossing. To consider this factor, we also eval-
uated the performance of SchICG2 on the 6-intersection case with Gmin = {15, 20, 25} s, as shown in Table 5. From the table, it
can be seen that solution quality decreases at a moderate pace, but remains good even as Gmin is 25 s.

It should be noted that not all intersections in a road network can be improved by the isolated application of adaptive
control strategies. For tightly-coupled intersections, explicit coordination becomes critical for improving the overall perfor-
mance. Nevertheless, our experiments do demonstrate that SchIC can work rather well on a large subset of intersections in a
practical road network. Thus traffic engineers might adopt an economical strategy of incrementally introducing adaptive
control to only a subset of intersections, and later implementing coordination mechanisms with other intersections
(Mirchandani and Head, 2001; Gartner et al., 2002), if necessary.
5. Discussion

5.1. Basic characteristics

SchIC achieves encouraging performance through both heuristic space reduction and efficient state elimination. As an ini-
tial attempt to actively utilize structural information in traffic flow, research in this direction might provide greater under-
standing of the ‘‘true’’ intersection control problem, as compared to more domain-independent, ‘‘black-box’’ optimization,
where structural information in traffic flow is for the most part ignored.
5.1.1. State space reduction
To avoid unnecessary risk of degrading solution quality, SchIC does not rely on the simple space reduction settings used in

other existing methods such as a coarser time resolution (Shelby, 2004; Porche and Lafortune, 1999), a short optimization
horizon (Robertson and Bretherton, 1974; Henry et al., 1983; Sen and Head, 1997), or a smaller number of phase switches
(Gartner et al., 2002).

Central to SchIC is a scheduling-based formulation of the intersection control problem. In this formulation, vehicles are
preprocessed into clusters based on the non-uniformly distributed nature of traffic flow. The intuition is that the cumulative
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delay is only associated with those vehicles that are delayed. The space D contains all feasible permutations of clusters/jobs,
and feasible schedules are constructed iteratively by adding jobs one by one, with each new successor state being defined at
the actual departure time of each job. As explained earlier, each decision can be viewed as a ‘‘heuristic leap’’ over multiple
time steps in the space X, based on use of several simple heuristics. The heuristic ‘‘Do not split a cluster’’ follows the use of
some aggregation patterns previously developed for reactive control strategies (Dunne and Potts, 1964; Viti and van Zuylen,
2010; Lämmer and Helbing, 2008), but the decision for servicing each cluster is instead made by a look-ahead optimization
process that is able to avoid myopic mistakes. The heuristic ‘‘Do not explore in an idle time period’’ eliminates search through
equivalently valued states in the case of forced idle time without loss of optimality. A region of these states provides no infor-
mation for local search heuristics. Finally, the heuristic ‘‘Do not intentionally defer a scheduled cluster’’, eliminates consid-
eration of dominated states in accordance with Theorem 1. Branch-and-bound methods (Kim et al., 2005; Porche and
Lafortune, 1999), in contrast, might not detect such circumstances until a serious delay has been accumulated later on in
the search tree.

Through simple heuristics tailored to flow information, the scheduling space D retains a large number of promising solu-
tions with some are likely to be near optimal. Compared to a heuristic search technique, e.g., CRONOS, there is a stronger
guarantee that the scheduling space D contains an (near) optimal solution in the underlying state space X.

5.1.2. State elimination
Exhaustive and branch-and-bound methods (Shelby, 2004; Kim et al., 2005; Porche and Lafortune, 1999) are not tractable

in real time for realistic settings, although they can ensure optimality. Heuristic search techniques (Boillot et al., 2006) give
no guarantee of achieving high-quality solutions, although they can attain high efficiency.

In existing state elimination techniques (or state equivalence relations (Shelby, 2004)), the state with the minimal cumu-
lative delay d among a group of ‘‘equivalent’’ states is kept. For grouping states, both COP and PRODYN require the same time
step and switched to the same phase index, i.e., (s, t). PRODYN also requires the same queue lengths on all lanes. However,
PRODYN does not consider any arriving vehicles and the condition for equivalence of two states is very restrictive (unless a
further approximation is introduced). COP also requires the same number of phase switches, which is only for the conve-
nience of realizing its phase-wise stages. COP does not take queuing and arriving vehicles into account.

For efficient elimination of states at early stages of the search, states in SchIC are grouped together if they have the same
(X, s). In the ‘‘full’’ StateManager mode, states in a group are maintained as a non-dominated set based on two state values,
i.e., (t, d), to ensure optimality in the scheduling search space D. In the ‘‘greedy’’ StateManager mode, a state group (X, s)
degenerates into an approximate state equivalence relation.

For state elimination, a fundamental change in SchIC is the shift in focus from the finish time t to the schedule status X. As
a pattern that emerges from the scheduling model, the complement of X indicates which vehicle clusters have not left the
intersection on each route, which provides more accurate structural information on traffic flow. By using X, all states in a
group are fairly compared since they have no difference in remaining vehicles.

5.1.3. Complexity and performance
The worst-case time complexity for SchIC has some interesting properties. As shown in Proposition 9, the ‘‘greedy’’ mode

in the worst case will make jIj2 �
QjIj

i¼1 jH
ðiÞ
P j þ 1

� �
state updates, and the ‘‘full’’ mode will in the worst case make jHOj times

more updates than the ‘‘greedy’’ mode. The main calculation step of any given state update can be accomplished in constant
time. As a bound for jCðiÞj; jHðiÞP j can be tighten by HðiÞP =ðthc þ DÞ (based on Proposition 1), which is bounded if thc is large en-
ough, and in this case the time resolution D can be arbitrarily fine. It is reasonable to set thc around or slightly above the
saturation headway (shw), which in practice is several seconds. For the traffic control problem, an implicit feature is that
the number of phases jIj is bounded. Thus, SchIC has a polynomial time complexity in jHPj, since the upper bound of jHOj
is polynomial in jHPj (Proposition 7). Since the time complexity is mostly related to jHPj, jHOj can be set to a large size so that
a large number of schedules (or full-clearance states) are considered. This enables better advantage to be taken of the benefit
of full-clearance optimization in obtaining better quality solutions. For saturated traffic conditions, HO might be much larger
than HP to allow full clearance of vehicles. Note that the prediction horizon HP might be extended in the case of explicit coor-
dination between neighbor intersections (Mirchandani and Head, 2001; Gartner et al., 2002).

The average performance of SchIC in our experimental analysis is much better than the theoretic worse case. For example,
as shown in Table 1, for an isolated intersection with HP/D = 140 and a demand of 1200 vph, the average number of state
updates per roll step (Nss/rs) of SchICG2 is only 43.3, which is close to the times required by some heuristic search techniques,
e.g., CRONOS. Compared to COP2, SchICG2 obtained higher quality solutions and required 8.37E + 05/4.33E + 01 � 1.93E4 less
time on Nss/rs. The average CPU time per roll step is 0.009/111 � 8.1E � 5 s. The average size of state groups can be as low as
1.31 (by comparing SchICF2 and SchICG2), which might be due to a high correlation between earlier finish times and lower
cumulative delays in the scheduling search space D.

5.2. Possible extensions

To keep the description and analysis of SchIC as simple as possible, some assumptions and simplifications have been
made. For traffic control practice, some auxiliary extensions might be introduced to increase the overall scope of the real-
world applicability.
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5.2.1. Complex intersections
First, the number of phases jIj in a cycle has been assumed to be very small. In our tests, almost all intersections have only

two or three phases. However, some complex intersections can have substantially more. But the number of clusters jC(i)j on
each route i can be further reduced by aggregating the anticipated queue based on a later start time, i.e., the minimal switch-
ing time from the initial phase to the phase i. On the route i, all clusters can be aggregated into an anticipated queue, i.e.,
jC(i)j = 1, if the later start time is larger than HðiÞP . This condition is easily satisfied for later phases since Y and Gmin values
are counted in Eq. 1. Thus, the computational cost will not increase much even if jIj is large.

A complex design with a large number of phases might also be decomposed into a set of simple phase designs with less
numbers of phases that are adaptively used in real time. The basic foundation is that the movements in any two entry ap-
proaches can be serviced in one or two phases with different combinations of movements. Since most real-world intersec-
tions have no more than four entry approaches, each simple phase design normally contains no more than four phases. Then
in some roll steps, an auxiliary procedure can be included to select one of the simple phase designs for the intersection, based
on analysis of major movements in recent traffic flow data. Overall performance might benefit more from a much shorter lost
time in each cycle, than from the use of a complex phase design.

5.2.2. Splitting clusters
In making Assumption 1 that each cluster is non-divisible, the intuition is to avoid incurring the rather long setup time for

clearing a residual queue. This intuition might not be valid for an extreme case where a cluster has a rather long duration and
low flow rate as compared to a competing cluster that appears within another route (e.g., if one route has many fewer lanes
than another route). Such a case might be easily addressed by applying a cap on the extension interval, so that the decision
can be re-evaluated in the next roll step.

To avoid splitting clusters, the maximum green times are not included in the optimization procedure of SchIC. For a sche-
dule, only if the departure time of the first job exceeds the maximum green time of the current phase, the repair rule will
lead to a disturbance. The disturbance should not significantly reduce performance if the current extension services for vehi-
cles in a sufficiently high flow rate. For the extension decision in Section 3.4, the idle period before the first job is guaranteed
to be no longer than the minimum switchback time.

Moreover, it is possible to satisfy all constraints in the output schedule by only cutting some jobs. A greedy strategy is to
check the schedule from the start, if any phase exceeds the maximum limit, then a cut is performed at the boundary, and all
jobs after the cut point are rescheduled by SchIC. This strategy only needs to call SchIC a few times. Dynamic job cutting
might be also integrated into SchIC, although the realization is more complicated.

5.2.3. Enhanced traffic models
For model-based optimization methods, a basic assumption is that the control model is sufficiently accurate for obtaining

near optimal solutions of the real problem. The control model in SchIC is quite simple. The use of constant free-flow speed
(Sharma et al., 2007; Mirchandani and Head, 2001) can capture the rationality of drivers. In principle, the speed variation
details can be neglected once vehicles have joined an anticipated queue. The queue is cleared at the saturation flow rate after
the start-up lost time (Sharma et al., 2007; Shelby, 2004; Sen and Head, 1997). If a delayed cluster has a flow rate lower than
saturation, the cumulative delay is estimated to be higher than the actual value. However, our experimental results show
that SchIC performs well with respect to solution quality. This might be due to leverage provided by the rolling horizon
scheme, since only the first cluster in the solution (normally a queue with the saturation flow rate) is considered in the
extension decision. This effect might also imply that those late-arriving clusters might be further aggregated since they
are less important than the early-arriving ones. Nevertheless, more advanced traffic models can be easily embedded for bet-
ter evaluation of states, if necessarily.

A related issue concerns the accuracy of input data, including measured flow data and model parameters. Perfect flow
data can be obtained if the predicted arrival time and the requesting phase of each vehicle are known, as assumed in some
methods (Sen and Head, 1997; Porche and Lafortune, 1999; Shelby, 2004). In practice, flow data are often obtained via sur-
veillance cameras (Boillot et al., 2006) or sensors (Sharma et al., 2007; Mirchandani and Head, 2001). In this paper, only two
detectors are used on both sides of each entry approach, thus some inaccuracy might exist in measured flow data. For exam-
ple, vehicles might move at different speeds before they join into the anticipated queue, and right and left turns can only be
handled through using estimated turning movement proportions. To counteract the risk of using static model parameters, a
practical alternative is to use a moving-average estimation of each model parameter to handle the variability in different
time periods and intersections (e.g., the saturation headway ranges from 1.8 to 2.4 s in the 2000 Highway Capacity Manual,
whereas 2.5 s of slow-moving queues are used in Cai et al. (2009), Shelby (2004) and this paper). Nevertheless, as shown in
Fig. 7, SchIC has good robustness under uncertainty, since the rolling horizon scheme ensures that errors are not accumu-
lated over time. The detection at the stop line can be used for calibrating the clearance time of each cluster. In the future,
accurate flow data might be obtained by advanced techniques, e.g., vehicle-to-infrastructure (V2I) communication, and thus
real-time corrections might be made.

5.2.4. Explicit, network-level coordination
In isolated application, the capability of a model-based control strategy is limited since the local prediction horizon is

bounded by the lengths of entry approaches. However, when employed as a core control strategy for individual intersections
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in a larger network, the myopic local view of each intersection can be strengthened significantly by a network-wide man-
agement system (Smith et al., 2007; Mirchandani and Head, 2001; Gartner et al., 2002). The basic interfaces for such net-
work-level coordination are embedded in the inputs of the basic control framework defined in Fig. 1; i.e., non-local
impacts from neighboring interesections might be incorporated by forecasting beyond the local prediction horizon of the
route flow information and/or by projecting additional operating constraints (Mirchandani and Head, 2001; Gartner et al.,
2002). For example, a moving average of previous arrivals along each approach is used in OPAC. In RHODES, the REALBAND
decisions obtained in a sub-network are projected as the constraints to its intersection control strategy, i.e., COP. Tradition-
ally offset length calculation has been projected as an additional operating constraint.

It is also possible to use explicit peer-to-peer exchange of schedule information to achieve coordination among neighbor-
ing intersections and amplify the performance of SchIC as a core intersection control strategy in complex road networks. In
such a network, the schedule of an upstream intersection can be used to produce predicted output flows beyond the local pre-
diction horizons of downstream neighbors. Due to the chain propagation, the look-ahead horizon extension of each intersec-
tion is capable of including non-local impacts from both direct and indirect upstream intersections. In comparison to other
model-based intersection control methods, SchIC has a nontrivial advantage since the horizon extension does not significantly
increase the computational complexity. The coordination can be perfect if all intersections essentially follow their schedules,
and minor changes in schedules might still be absorbed by exploiting local temporal flexibility. Additional coordination mech-
anisms can be added to address dynamics, such as preventing instability due to spill back or reducing mis-coordination due to
critical schedule changes of neighbors in different roll steps. In all cases, these mechanisms might exploit details in current
(extended) intersection schedules (i.e., before they have been formally adopted). For example, a simple yet nontrivial mech-
anism is to force that each schedule satisfies the maximum green constraints. It is also possible to identify a spill back before it
really happens, based on the detail flow information contained in each schedule. The efficiency of SchIC also allows itself to be
iteratively invoked by more complex negotiation mechanisms to reach the global optimum in a sub-network.

6. Conclusions

In this paper, we have described a real-time intersection control strategy, called SchIC, for an adaptive traffic signal con-
trol. Based on an aggregate representation on predicted traffic flow data, the intersection control problem is formulated as a
scheduling model, in which each schedule is a phase switching sequence that is generated utilizing structural information in
non-uniformly distributed traffic flows. The scheduling model is then solved by a forward recursive algorithm with an effi-
cient elimination criterion, which not only reduces the state space significantly in practice but also retains promising solu-
tions. SchIC can efficiently find near optimal solutions in an extended optimization horizon with a fine time resolution.

We studied the performance of SchIC on two ideal scenarios and one real-world urban traffic network. For an isolated
intersection with a long prediction horizon, SchIC was shown to obtain solutions with higher quality than both a vehicle-
actuated logic (VA) and COP at lower computational expense, especially in the saturation region with high demands. For
an arterial network, SchIC demonstrated the ability to achieve better implicit coordination between intersections, as com-
pared to VA, COP, and a fixed timing plan with explicit coordination, if the prediction horizon is not too short and the de-
mand is not too high. Given such a traffic control strategy with strong ability to achieve implicit coordination, a
nontrivial implication is that a large traffic network might be easily decomposed into sub-networks. We also demonstrated
that the performance of SchIC can be more robust than fixed coordination with respect to handling local variation in the traf-
fic demand. A straightforward application was then demonstrated on a real-world urban traffic network. Based on the coor-
dinated timing plans obtained by SYNCHRO for time-of-day periods with macroscopic traffic patterns, SchIC was applied to a
subset of intersections to exploit microscopic variability in non-uniformly distributed traffic flow and was shown to signif-
icantly enhance the overall performance of the offline optimized network. Possible extensions for enhancing the overall
scope of the real-world applicability of SchIC were also discussed.
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